本文整理汇总了Java中org.apache.commons.math3.ml.distance.DistanceMeasure类的典型用法代码示例。如果您正苦于以下问题:Java DistanceMeasure类的具体用法?Java DistanceMeasure怎么用?Java DistanceMeasure使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
DistanceMeasure类属于org.apache.commons.math3.ml.distance包,在下文中一共展示了DistanceMeasure类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: FuzzyKMeansClusterer
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
/**
* Creates a new instance of a FuzzyKMeansClusterer.
*
* @param k the number of clusters to split the data into
* @param fuzziness the fuzziness factor, must be > 1.0
* @param maxIterations the maximum number of iterations to run the algorithm for.
* If negative, no maximum will be used.
* @param measure the distance measure to use
* @param epsilon the convergence criteria (default is 1e-3)
* @param random random generator to use for choosing initial centers
* @throws NumberIsTooSmallException if {@code fuzziness <= 1.0}
*/
public FuzzyKMeansClusterer(final int k, final double fuzziness,
final int maxIterations, final DistanceMeasure measure,
final double epsilon, final RandomGenerator random)
throws NumberIsTooSmallException {
super(measure);
if (fuzziness <= 1.0d) {
throw new NumberIsTooSmallException(fuzziness, 1.0, false);
}
this.k = k;
this.fuzziness = fuzziness;
this.maxIterations = maxIterations;
this.epsilon = epsilon;
this.random = random;
this.membershipMatrix = null;
this.points = null;
this.clusters = null;
}
示例2: findBest
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
/**
* Finds the neuron that best matches the given features.
*
* @param features Data.
* @param neurons List of neurons to scan. If the list is empty
* {@code null} will be returned.
* @param distance Distance function. The neuron's features are
* passed as the first argument to {@link DistanceMeasure#compute(double[],double[])}.
* @return the neuron whose features are closest to the given data.
* @throws org.apache.commons.math3.exception.DimensionMismatchException
* if the size of the input is not compatible with the neurons features
* size.
*/
public static Neuron findBest(double[] features,
Iterable<Neuron> neurons,
DistanceMeasure distance) {
Neuron best = null;
double min = Double.POSITIVE_INFINITY;
for (final Neuron n : neurons) {
final double d = distance.compute(n.getFeatures(), features);
if (d < min) {
min = d;
best = n;
}
}
return best;
}
示例3: findBestAndSecondBest
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
/**
* Finds the two neurons that best match the given features.
*
* @param features Data.
* @param neurons List of neurons to scan. If the list is empty
* {@code null} will be returned.
* @param distance Distance function. The neuron's features are
* passed as the first argument to {@link DistanceMeasure#compute(double[],double[])}.
* @return the two neurons whose features are closest to the given data.
* @throws org.apache.commons.math3.exception.DimensionMismatchException
* if the size of the input is not compatible with the neurons features
* size.
*/
public static Pair<Neuron, Neuron> findBestAndSecondBest(double[] features,
Iterable<Neuron> neurons,
DistanceMeasure distance) {
Neuron[] best = { null, null };
double[] min = { Double.POSITIVE_INFINITY,
Double.POSITIVE_INFINITY };
for (final Neuron n : neurons) {
final double d = distance.compute(n.getFeatures(), features);
if (d < min[0]) {
// Replace second best with old best.
min[1] = min[0];
best[1] = best[0];
// Store current as new best.
min[0] = d;
best[0] = n;
} else if (d < min[1]) {
// Replace old second best with current.
min[1] = d;
best[1] = n;
}
}
return new Pair<Neuron, Neuron>(best[0], best[1]);
}
示例4: sort
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
/**
* Creates a list of neurons sorted in increased order of the distance
* to the given {@code features}.
*
* @param features Data.
* @param neurons List of neurons to scan. If it is empty, an empty array
* will be returned.
* @param distance Distance function.
* @return the neurons, sorted in increasing order of distance in data
* space.
* @throws org.apache.commons.math3.exception.DimensionMismatchException
* if the size of the input is not compatible with the neurons features
* size.
*
* @see #findBest(double[],Iterable,DistanceMeasure)
* @see #findBestAndSecondBest(double[],Iterable,DistanceMeasure)
*
* @since 3.6
*/
public static Neuron[] sort(double[] features,
Iterable<Neuron> neurons,
DistanceMeasure distance) {
final List<PairNeuronDouble> list = new ArrayList<PairNeuronDouble>();
for (final Neuron n : neurons) {
final double d = distance.compute(n.getFeatures(), features);
list.add(new PairNeuronDouble(n, d));
}
Collections.sort(list, PairNeuronDouble.COMPARATOR);
final int len = list.size();
final Neuron[] sorted = new Neuron[len];
for (int i = 0; i < len; i++) {
sorted[i] = list.get(i).getNeuron();
}
return sorted;
}
示例5: computeQuantizationError
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
/**
* Computes the quantization error.
* The quantization error is the average distance between a feature vector
* and its "best matching unit" (closest neuron).
*
* @param data Feature vectors.
* @param neurons List of neurons to scan.
* @param distance Distance function.
* @return the error.
* @throws NoDataException if {@code data} is empty.
*/
public static double computeQuantizationError(Iterable<double[]> data,
Iterable<Neuron> neurons,
DistanceMeasure distance) {
double d = 0;
int count = 0;
for (double[] f : data) {
++count;
d += distance.compute(f, findBest(f, neurons, distance).getFeatures());
}
if (count == 0) {
throw new NoDataException();
}
return d / count;
}
示例6: computeTopographicError
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
/**
* Computes the topographic error.
* The topographic error is the proportion of data for which first and
* second best matching units are not adjacent in the map.
*
* @param data Feature vectors.
* @param net Network.
* @param distance Distance function.
* @return the error.
* @throws NoDataException if {@code data} is empty.
*/
public static double computeTopographicError(Iterable<double[]> data,
Network net,
DistanceMeasure distance) {
int notAdjacentCount = 0;
int count = 0;
for (double[] f : data) {
++count;
final Pair<Neuron, Neuron> p = findBestAndSecondBest(f, net, distance);
if (!net.getNeighbours(p.getFirst()).contains(p.getSecond())) {
// Increment count if first and second best matching units
// are not neighbours.
++notAdjacentCount;
}
}
if (count == 0) {
throw new NoDataException();
}
return ((double) notAdjacentCount) / count;
}
示例7: withDistanceMeasure
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
public DistanceTester withDistanceMeasure(final DistanceMeasure distance) {
this.distance = new GenericDistanceMeasure<double[]>() {
private static final long serialVersionUID = -7065467026544814688L;
@Override
public double compute(double[] a, double[] b) {
return distance.compute(a, b);
}
@Override
public double compute(double[] a, double[] b, double cutOffValue) {
return distance.compute(a, b);
}
};
return this;
}
示例8: DBSCANClusterer
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
/**
* Creates a new instance of a DBSCANClusterer.
*
* @param eps maximum radius of the neighborhood to be considered
* @param minPts minimum number of points needed for a cluster
* @param measure the distance measure to use
* @throws NotPositiveException if {@code eps < 0.0} or {@code minPts < 0}
*/
public DBSCANClusterer(final double eps, final int minPts, final DistanceMeasure measure)
throws NotPositiveException {
super(measure);
if (eps < 0.0d) {
throw new NotPositiveException(eps);
}
if (minPts < 0) {
throw new NotPositiveException(minPts);
}
this.eps = eps;
this.minPts = minPts;
}
示例9: KMeansPlusPlusClusterer
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
/** Build a clusterer.
*
* @param k the number of clusters to split the data into
* @param maxIterations the maximum number of iterations to run the algorithm for.
* If negative, no maximum will be used.
* @param measure the distance measure to use
* @param random random generator to use for choosing initial centers
* @param emptyStrategy strategy to use for handling empty clusters that
* may appear during algorithm iterations
*/
public KMeansPlusPlusClusterer(final int k, final int maxIterations,
final DistanceMeasure measure,
final RandomGenerator random,
final EmptyClusterStrategy emptyStrategy) {
super(measure);
this.k = k;
this.maxIterations = maxIterations;
this.random = random;
this.emptyStrategy = emptyStrategy;
}
示例10: KohonenUpdateAction
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
/**
* @param distance Distance function.
* @param learningFactor Learning factor update function.
* @param neighbourhoodSize Neighbourhood size update function.
*/
public KohonenUpdateAction(DistanceMeasure distance,
LearningFactorFunction learningFactor,
NeighbourhoodSizeFunction neighbourhoodSize) {
this.distance = distance;
this.learningFactor = learningFactor;
this.neighbourhoodSize = neighbourhoodSize;
}
示例11: computeU
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
/**
* Computes the <a href="http://en.wikipedia.org/wiki/U-Matrix">
* U-matrix</a> of a two-dimensional map.
*
* @param map Network.
* @param distance Function to use for computing the average
* distance from a neuron to its neighbours.
* @return the matrix of average distances.
*/
public static double[][] computeU(NeuronSquareMesh2D map,
DistanceMeasure distance) {
final int numRows = map.getNumberOfRows();
final int numCols = map.getNumberOfColumns();
final double[][] uMatrix = new double[numRows][numCols];
final Network net = map.getNetwork();
for (int i = 0; i < numRows; i++) {
for (int j = 0; j < numCols; j++) {
final Neuron neuron = map.getNeuron(i, j);
final Collection<Neuron> neighbours = net.getNeighbours(neuron);
final double[] features = neuron.getFeatures();
double d = 0;
int count = 0;
for (Neuron n : neighbours) {
++count;
d += distance.compute(features, n.getFeatures());
}
uMatrix[i][j] = d / count;
}
}
return uMatrix;
}
示例12: SmoothedDataHistogram
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
/**
* @param smoothingBins Number of bins.
* @param distance Distance.
*/
public SmoothedDataHistogram(int smoothingBins,
DistanceMeasure distance) {
this.smoothingBins = smoothingBins;
this.distance = distance;
double sum = 0;
for (int i = 0; i < smoothingBins; i++) {
sum += smoothingBins - i;
}
this.membershipNormalization = 1d / sum;
}
示例13: testGetters
import org.apache.commons.math3.ml.distance.DistanceMeasure; //导入依赖的package包/类
@Test
public void testGetters() {
final DistanceMeasure measure = new CanberraDistance();
final RandomGenerator random = new JDKRandomGenerator();
final FuzzyKMeansClusterer<DoublePoint> clusterer =
new FuzzyKMeansClusterer<DoublePoint>(3, 2.0, 100, measure, 1e-6, random);
Assert.assertEquals(3, clusterer.getK());
Assert.assertEquals(2.0, clusterer.getFuzziness(), 1e-6);
Assert.assertEquals(100, clusterer.getMaxIterations());
Assert.assertEquals(1e-6, clusterer.getEpsilon(), 1e-12);
Assert.assertThat(clusterer.getDistanceMeasure(), CoreMatchers.is(measure));
Assert.assertThat(clusterer.getRandomGenerator(), CoreMatchers.is(random));
}