当前位置: 首页>>代码示例>>Java>>正文


Java SingularMatrixException类代码示例

本文整理汇总了Java中org.apache.commons.math3.linear.SingularMatrixException的典型用法代码示例。如果您正苦于以下问题:Java SingularMatrixException类的具体用法?Java SingularMatrixException怎么用?Java SingularMatrixException使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


SingularMatrixException类属于org.apache.commons.math3.linear包,在下文中一共展示了SingularMatrixException类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: testNonInvertible

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
@Override
@Test(expected=SingularMatrixException.class)
public void testNonInvertible() {
    /*
     * Overrides the method from parent class, since the default singularity
     * threshold (1e-14) does not trigger the expected exception.
     */
    LinearProblem problem = new LinearProblem(new double[][] {
            {  1, 2, -3 },
            {  2, 1,  3 },
            { -3, 0, -9 }
    }, new double[] { 1, 1, 1 });

    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum = optimizer.optimize(100, problem, problem.target, new double[] { 1, 1, 1 }, new double[] { 0, 0, 0 });
    Assert.assertTrue(FastMath.sqrt(problem.target.length) * optimizer.getRMS() > 0.6);

    optimizer.computeCovariances(optimum.getPoint(), 1.5e-14);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:20,代码来源:LevenbergMarquardtOptimizerTest.java

示例2: testNonInvertible

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
@Override
@Test(expected=SingularMatrixException.class)
public void testNonInvertible() {
    /*
     * Overrides the method from parent class, since the default singularity
     * threshold (1e-14) does not trigger the expected exception.
     */
    LinearProblem problem = new LinearProblem(new double[][] {
            {  1, 2, -3 },
            {  2, 1,  3 },
            { -3, 0, -9 }
    }, new double[] { 1, 1, 1 });

    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum
        = optimizer.optimize(new MaxEval(100),
                             problem.getModelFunction(),
                             problem.getModelFunctionJacobian(),
                             problem.getTarget(),
                             new Weight(new double[] { 1, 1, 1 }),
                             new InitialGuess(new double[] { 0, 0, 0 }));
    Assert.assertTrue(FastMath.sqrt(optimizer.getTargetSize()) * optimizer.getRMS() > 0.6);

    optimizer.computeCovariances(optimum.getPoint(), 1.5e-14);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:26,代码来源:LevenbergMarquardtOptimizerTest.java

示例3: update

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
/**
 * This method updates the Kalman-Filter with the last known state/measurement of the observed value.
 * 
 * @param xMeasured time step of measurement.  
 * It is measured in full, i.e. as {@link Long}, seconds since midnight, January 1, 1970 UTC.
 * @param yMeasured Current measurement.
 * @return True if the update was successful.
 */
public boolean update(long xMeasured, double yMeasured) {
    boolean success = false;
    try {
        // Call predict(0), if no prediction was made since the last update
        // Reason: The Kalman-Filter needs a predict-update(correct)-cycle.
        if (!predictedSinceUpdate && lastUpdate != Constants.NO_PREDICTION) {
            predict(0);
        }
        
        filter.correct(new double[] {xMeasured, 0, yMeasured, 0 });
        // When an older value is updated/corrected the attributes 'lastUpdated' and 'lastUpdate' do not change.
        if (lastUpdated < xMeasured) {
            lastUpdated = xMeasured;
            lastUpdate = yMeasured;
        }
        success = true;
        predictedSinceUpdate = false;
        lastMemUpdated();
    } catch (NullArgumentException | DimensionMismatchException | SingularMatrixException e) {
        LogManager.getLogger(Kalman.class).error(e.getMessage(), e);
    }
    return success;
}
 
开发者ID:QualiMaster,项目名称:Infrastructure,代码行数:32,代码来源:Kalman.java

示例4: testNonInvertible

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
@Override
@Test(expected=SingularMatrixException.class)
public void testNonInvertible() {
    /*
     * Overrides the method from parent class, since the default singularity
     * threshold (1e-14) does not trigger the expected exception.
     */
    LinearProblem problem = new LinearProblem(new double[][] {
            {  1, 2, -3 },
            {  2, 1,  3 },
            { -3, 0, -9 }
    }, new double[] { 1, 1, 1 });

    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    optimizer.optimize(100, problem, problem.target, new double[] { 1, 1, 1 }, new double[] { 0, 0, 0 });
    Assert.assertTrue(FastMath.sqrt(problem.target.length) * optimizer.getRMS() > 0.6);

    optimizer.getCovariances(1.5e-14);
}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:20,代码来源:LevenbergMarquardtOptimizerTest.java

示例5: outputResult

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
private void outputResult() {
	output = new StringBuilder();
	printDoubleArray("expectedPosition: ", expectedPosition);
	printDoubleArray("linear calculatedPosition: ", linearCalculatedPosition.toArray());
	printDoubleArray("non-linear calculatedPosition: ", nonLinearOptimum.getPoint().toArray());
	output.append("numberOfIterations: ").append(nonLinearOptimum.getIterations()).append("\n");
	output.append("numberOfEvaluations: ").append(nonLinearOptimum.getEvaluations()).append("\n");
	try {
		RealVector standardDeviation = nonLinearOptimum.getSigma(0);
		printDoubleArray("standardDeviation: ", standardDeviation.toArray());
		output.append("Norm of deviation: ").append(standardDeviation.getNorm()).append("\n");
		RealMatrix covarianceMatrix = nonLinearOptimum.getCovariances(0);
		output.append("covarianceMatrix: ").append(covarianceMatrix).append("\n");
	} catch (SingularMatrixException e) {
		System.err.println(e.getMessage());
	}

	System.out.println(output.toString());
}
 
开发者ID:lemmingapex,项目名称:trilateration,代码行数:20,代码来源:TrilaterationTest.java

示例6: inverse

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
/**
 * @param A a square matrix.
 * @return the inverse of A or null if A is non-square or singular.
 */
public static double[][] inverse(final double[][] A) {
	RealMatrix M = MatrixUtils.createRealMatrix(A);
	if (!M.isSquare())
		return null;
	else {
		double[][] Ai = null;
		try {
			RealMatrix Mi = MatrixUtils.inverse(M); //new LUDecomposition(M).getSolver().getInverse();
			Ai = Mi.getData();
		} catch (SingularMatrixException e) {}
		return Ai;
	}
}
 
开发者ID:imagingbook,项目名称:imagingbook-common,代码行数:18,代码来源:Matrix.java

示例7: solve

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
public static double[] solve(final double[][] A, double[] b) {
	RealMatrix AA = MatrixUtils.createRealMatrix(A);
	RealVector bb = MatrixUtils.createRealVector(b);
	DecompositionSolver solver = new LUDecomposition(AA).getSolver();
	double[] x = null;
	try {
		x = solver.solve(bb).toArray();
	} catch (SingularMatrixException e) {}
	return x;
}
 
开发者ID:imagingbook,项目名称:imagingbook-common,代码行数:11,代码来源:Matrix.java

示例8: inverse

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
@Nonnull
public static RealMatrix inverse(@Nonnull final RealMatrix m, final boolean exact)
        throws SingularMatrixException {
    LUDecomposition LU = new LUDecomposition(m);
    DecompositionSolver solver = LU.getSolver();
    final RealMatrix inv;
    if (exact || solver.isNonSingular()) {
        inv = solver.getInverse();
    } else {
        SingularValueDecomposition SVD = new SingularValueDecomposition(m);
        inv = SVD.getSolver().getInverse();
    }
    return inv;
}
 
开发者ID:apache,项目名称:incubator-hivemall,代码行数:15,代码来源:MatrixUtils.java

示例9: solve

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
/**
 * L = A x R
 * 
 * @return a matrix A that minimizes A x R - L
 */
@Nonnull
public static RealMatrix solve(@Nonnull final RealMatrix L, @Nonnull final RealMatrix R,
        final boolean exact) throws SingularMatrixException {
    LUDecomposition LU = new LUDecomposition(R);
    DecompositionSolver solver = LU.getSolver();
    final RealMatrix A;
    if (exact || solver.isNonSingular()) {
        A = LU.getSolver().solve(L);
    } else {
        SingularValueDecomposition SVD = new SingularValueDecomposition(R);
        A = SVD.getSolver().solve(L);
    }
    return A;
}
 
开发者ID:apache,项目名称:incubator-hivemall,代码行数:20,代码来源:MatrixUtils.java

示例10: testNonInvertible

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
@Override
@Test
public void testNonInvertible() {
    try{
        /*
         * Overrides the method from parent class, since the default singularity
         * threshold (1e-14) does not trigger the expected exception.
         */
        LinearProblem problem = new LinearProblem(new double[][] {
                {  1, 2, -3 },
                {  2, 1,  3 },
                { -3, 0, -9 }
        }, new double[] { 1, 1, 1 });

        final Optimum optimum = optimizer.optimize(
                problem.getBuilder().maxIterations(20).build());

        //TODO check that it is a bad fit? Why the extra conditions?
        Assert.assertTrue(FastMath.sqrt(problem.getTarget().length) * optimum.getRMS() > 0.6);

        optimum.getCovariances(1.5e-14);

        fail(optimizer);
    }catch (SingularMatrixException e){
        //expected
    }
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:28,代码来源:LevenbergMarquardtOptimizerTest.java

示例11: testQRSingular

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
@Test(expected=SingularMatrixException.class)
public void testQRSingular() {
    final RealMatrix a = MatrixUtils.createRealMatrix(new double[][] {
        { 1, 6, 4 }, { 2, 4, -1 }, { -1, 2, 5 }
    });
    final RealVector b = new ArrayRealVector(new double[]{ 5, 6, 1 });
    new QRDecomposition(a, 1.0e-15).getSolver().solve(b);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:9,代码来源:QRDecompositionTest.java

示例12: guessStartLine

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
/** Guess a start line using the last four results.
 * @param n number of cached results available
 * @param target target ground point
 * @return guessed start line
 */
private double guessStartLine(final int n, final Vector3D target) {
    try {

        // assume a linear model of the form: l = ax + by + cz + d
        final RealMatrix m = new Array2DRowRealMatrix(n, 4);
        final RealVector v = new ArrayRealVector(n);
        for (int i = 0; i < n; ++i) {
            m.setEntry(i, 0, cachedResults[i].getTarget().getX());
            m.setEntry(i, 1, cachedResults[i].getTarget().getY());
            m.setEntry(i, 2, cachedResults[i].getTarget().getZ());
            m.setEntry(i, 3, 1.0);
            v.setEntry(i, cachedResults[i].getLine());
        }

        final DecompositionSolver solver = new QRDecomposition(m, Precision.SAFE_MIN).getSolver();
        final RealVector coefficients = solver.solve(v);

        // apply the linear model
        return target.getX() * coefficients.getEntry(0) +
               target.getY() * coefficients.getEntry(1) +
               target.getZ() * coefficients.getEntry(2) +
               coefficients.getEntry(3);

    } catch (SingularMatrixException sme) {
        // the points are not independent
        return Double.NaN;
    }
}
 
开发者ID:CS-SI,项目名称:Rugged,代码行数:34,代码来源:SensorMeanPlaneCrossing.java

示例13: retrieveGaussianMixtureModelForFilteredTargets

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
/** <p>Produces a Gaussian mixture model based on the difference between targets and segment means.</p>
 * <p>Filters targets to populations where more than the minProportion lie in a single segment.</p>
 * <p>Returns null if no pass filtering.  Please note that in these cases,
 * in the rest of this class, we use this to assume that a GMM is not a good model.</p>
 *
 * @param segments  -- segments with segment mean in log2 copy ratio space
 * @param targets -- targets with a log2 copy ratio estimate
 * @param minProportion -- minimum proportion of all targets that a given segment must have in order to be used
 *                      in the evaluation
 * @param numComponents -- number of components to use in the GMM.  Usually, this is 2.
 * @return  never {@code null}.  Fitting result with indications whether it converged or was even attempted.
 */
private MixtureMultivariateNormalFitResult retrieveGaussianMixtureModelForFilteredTargets(final List<ModeledSegment> segments,
                                                                                          final TargetCollection<ReadCountRecord.SingleSampleRecord> targets, double minProportion, int numComponents){

    // For each target in a segment that contains enough targets, normalize the difference against the segment mean
    //  and collapse the filtered targets into the copy ratio estimates.
    final List<Double> filteredTargetsSegDiff = getNumProbeFilteredTargetList(segments, targets, minProportion);

    if (filteredTargetsSegDiff.size() < numComponents) {
        return new MixtureMultivariateNormalFitResult(null, false, false);
    }

    // Assume that Apache Commons wants data points in the first dimension.
    // Note that second dimension of length 2 (instead of 1) is to wrok around funny Apache commons API.
    final double[][] filteredTargetsSegDiff2d = new double[filteredTargetsSegDiff.size()][2];

    // Convert the filtered targets into 2d array (even if second dimension is length 1).  The second dimension is
    //  uncorrelated Gaussian.  This is only to get around funny API in Apache Commons, which will throw an
    //  exception if the length of the second dimension is < 2
    final RandomGenerator rng = RandomGeneratorFactory.createRandomGenerator(new Random(RANDOM_SEED));
    final NormalDistribution nd = new NormalDistribution(rng, 0, .1);
    for (int i = 0; i < filteredTargetsSegDiff.size(); i++) {
        filteredTargetsSegDiff2d[i][0] = filteredTargetsSegDiff.get(i);
        filteredTargetsSegDiff2d[i][1] = nd.sample();
    }

    final MixtureMultivariateNormalDistribution estimateEM0 = MultivariateNormalMixtureExpectationMaximization.estimate(filteredTargetsSegDiff2d, numComponents);
    final MultivariateNormalMixtureExpectationMaximization multivariateNormalMixtureExpectationMaximization = new MultivariateNormalMixtureExpectationMaximization(filteredTargetsSegDiff2d);

    try {
        multivariateNormalMixtureExpectationMaximization.fit(estimateEM0);
    } catch (final MaxCountExceededException | ConvergenceException | SingularMatrixException e) {
        // We are done, we cannot make a fitting.  We should return a result that we attempted a fitting, but it
        //  did not converge.  Include the model as it was when the exception was thrown.
        return new MixtureMultivariateNormalFitResult(multivariateNormalMixtureExpectationMaximization.getFittedModel(), false, true);
    }
    return new MixtureMultivariateNormalFitResult(multivariateNormalMixtureExpectationMaximization.getFittedModel(), true, true);
}
 
开发者ID:broadinstitute,项目名称:gatk-protected,代码行数:50,代码来源:CoverageDropoutDetector.java

示例14: updateInverseCovariance

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
private void updateInverseCovariance() {
    try {
        inverseCov = new LUDecomposition(cov).getSolver().getInverse();
    } catch (SingularMatrixException e) {
        singularCovariances.inc();
        inverseCov = new SingularValueDecomposition(cov).getSolver().getInverse();
    }
}
 
开发者ID:stanford-futuredata,项目名称:macrobase,代码行数:9,代码来源:MinCovDet.java

示例15: correct

import org.apache.commons.math3.linear.SingularMatrixException; //导入依赖的package包/类
/**
 * Correct the current state estimate with an actual measurement.
 *
 * @param z
 *            the measurement vector
 * @throws NullArgumentException
 *             if the measurement vector is {@code null}
 * @throws DimensionMismatchException
 *             if the dimension of the measurement vector does not fit
 * @throws SingularMatrixException
 *             if the covariance matrix could not be inverted
 */
public void correct(final RealVector z)
        throws NullArgumentException, DimensionMismatchException, SingularMatrixException {

    // sanity checks
    MathUtils.checkNotNull(z);
    if (z.getDimension() != measurementMatrix.getRowDimension()) {
        throw new DimensionMismatchException(z.getDimension(),
                                             measurementMatrix.getRowDimension());
    }

    // S = H * P(k) - * H' + R
    RealMatrix s = measurementMatrix.multiply(errorCovariance)
        .multiply(measurementMatrixT)
        .add(measurementModel.getMeasurementNoise());

    // invert S
    // as the error covariance matrix is a symmetric positive
    // semi-definite matrix, we can use the cholesky decomposition
    DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
    RealMatrix invertedS = solver.getInverse();

    // Inn = z(k) - H * xHat(k)-
    RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));

    // calculate gain matrix
    // K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
    // K(k) = P(k)- * H' * S^-1
    RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);

    // update estimate with measurement z(k)
    // xHat(k) = xHat(k)- + K * Inn
    stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));

    // update covariance of prediction error
    // P(k) = (I - K * H) * P(k)-
    RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
    errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:51,代码来源:KalmanFilter.java


注:本文中的org.apache.commons.math3.linear.SingularMatrixException类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。