本文整理汇总了Java中org.apache.commons.math3.linear.CholeskyDecomposition类的典型用法代码示例。如果您正苦于以下问题:Java CholeskyDecomposition类的具体用法?Java CholeskyDecomposition怎么用?Java CholeskyDecomposition使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
CholeskyDecomposition类属于org.apache.commons.math3.linear包,在下文中一共展示了CholeskyDecomposition类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: cholesky
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
/**
* Calculates the Cholesky decomposition of a matrix. The Cholesky
* decomposition of a real symmetric positive-definite matrix A consists of
* a lower triangular matrix L with same size such that: A = LLT. In a
* sense, this is the square root of A.
*
* @param a The given matrix.
* @return Result array.
*/
public static Array cholesky(Array a) {
Array r = Array.factory(DataType.DOUBLE, a.getShape());
double[][] aa = (double[][]) ArrayUtil.copyToNDJavaArray(a);
RealMatrix matrix = new Array2DRowRealMatrix(aa, false);
CholeskyDecomposition decomposition = new CholeskyDecomposition(matrix);
RealMatrix L = decomposition.getL();
int n = L.getColumnDimension();
int m = L.getRowDimension();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
r.setDouble(i * n + j, L.getEntry(i, j));
}
}
return r;
}
示例2: estimateCoefficients
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
@Override
public SlopeCoefficients estimateCoefficients(final DerivationEquation eq)
throws EstimationException {
final double[][] sourceTriangleMatrix = eq.getCovarianceLowerTriangularMatrix();
// Copy matrix and enhance it to a full matrix as expected by CholeskyDecomposition
// FIXME: Avoid copy job to speed-up the solving process e.g. by extending the CholeskyDecomposition constructor
final int length = sourceTriangleMatrix.length;
final double[][] matrix = new double[length][];
for (int i = 0; i < length; i++) {
matrix[i] = new double[length];
final double[] s = sourceTriangleMatrix[i];
final double[] t = matrix[i];
for (int j = 0; j <= i; j++) {
t[j] = s[j];
}
for (int j = i + 1; j < length; j++) {
t[j] = sourceTriangleMatrix[j][i];
}
}
final RealMatrix coefficients =
new Array2DRowRealMatrix(matrix, false);
try {
final DecompositionSolver solver = new CholeskyDecomposition(coefficients).getSolver();
final RealVector constants = new ArrayRealVector(eq.getConstraints(), true);
final RealVector solution = solver.solve(constants);
return new DefaultSlopeCoefficients(solution.toArray());
} catch (final NonPositiveDefiniteMatrixException e) {
throw new EstimationException("Matrix inversion error due to data is linearly dependent", e);
}
}
示例3: getWhiteningTransformation
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
/**
* Returns the 'root' (U) of the inverse covariance matrix S^{-1},
* such that S^{-1} = U^T . U
* This matrix can be used to pre-transform the original sample
* vectors X (by X → U . X) to a space where distance measurement (in the Mahalanobis
* sense) can be calculated with the usual Euclidean norm.
* The matrix U is invertible in case the reverse mapping is required.
*
* @return The matrix for pre-transforming the original sample vectors.
*/
public double[][] getWhiteningTransformation() {
IJ.log("in whitening");
double relativeSymmetryThreshold = 1.0E-6; // CholeskyDecomposition.DEFAULT_RELATIVE_SYMMETRY_THRESHOLD == 1.0E-15; too small!
double absolutePositivityThreshold = 1.0E-10; // CholeskyDecomposition.DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD == 1.0E-10;
CholeskyDecomposition cd =
new CholeskyDecomposition(MatrixUtils.createRealMatrix(iCov),
relativeSymmetryThreshold, absolutePositivityThreshold);
RealMatrix U = cd.getLT();
return U.getData();
}
示例4: solve
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
@Override
protected RealVector solve(final RealMatrix jacobian,
final RealVector residuals) {
try {
final Pair<RealMatrix, RealVector> normalEquation =
computeNormalMatrix(jacobian, residuals);
final RealMatrix normal = normalEquation.getFirst();
final RealVector jTr = normalEquation.getSecond();
return new CholeskyDecomposition(
normal, SINGULARITY_THRESHOLD, SINGULARITY_THRESHOLD)
.getSolver()
.solve(jTr);
} catch (NonPositiveDefiniteMatrixException e) {
throw new ConvergenceException(LocalizedFormats.UNABLE_TO_SOLVE_SINGULAR_PROBLEM, e);
}
}
示例5: correct
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
/**
* Correct the current state estimate with an actual measurement.
*
* @param z the measurement vector
* @throws DimensionMismatchException if the dimension of the
* measurement vector does not fit
* @throws org.apache.commons.math3.linear.SingularMatrixException
* if the covariance matrix could not be inverted
*/
public void correct(final RealVector z) {
// sanity checks
MathUtils.checkNotNull(z);
if (z.getDimension() != measurementMatrix.getRowDimension()) {
throw new DimensionMismatchException(z.getDimension(),
measurementMatrix.getRowDimension());
}
// S = H * P(k) - * H' + R
RealMatrix s = measurementMatrix.multiply(errorCovariance)
.multiply(measurementMatrixT)
.add(measurementModel.getMeasurementNoise());
// invert S
// as the error covariance matrix is a symmetric positive
// semi-definite matrix, we can use the cholesky decomposition
DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
RealMatrix invertedS = solver.getInverse();
// Inn = z(k) - H * xHat(k)-
RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));
// calculate gain matrix
// K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
// K(k) = P(k)- * H' * S^-1
RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);
// update estimate with measurement z(k)
// xHat(k) = xHat(k)- + K * Inn
stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));
// update covariance of prediction error
// P(k) = (I - K * H) * P(k)-
RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
示例6: invSPD
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
public Matrix invSPD() {
try {
return CommonsMathDenseDoubleMatrix2DFactory.INSTANCE.dense(new CholeskyDecomposition(matrix).getSolver()
.getInverse());
} catch (Exception e) {
throw new RuntimeException(e);
}
}
开发者ID:ujmp,项目名称:universal-java-matrix-package,代码行数:9,代码来源:AbstractCommonsMathDenseDoubleMatrix2D.java
示例7: solveSPD
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
public Matrix solveSPD(Matrix b) {
try {
if (b instanceof AbstractCommonsMathDenseDoubleMatrix2D) {
AbstractCommonsMathDenseDoubleMatrix2D b2 = (AbstractCommonsMathDenseDoubleMatrix2D) b;
RealMatrix ret = new CholeskyDecomposition(matrix).getSolver().solve(b2.matrix);
return CommonsMathDenseDoubleMatrix2DFactory.INSTANCE.dense(ret);
} else {
return super.solve(b);
}
} catch (Exception e) {
throw new RuntimeException(e);
}
}
开发者ID:ujmp,项目名称:universal-java-matrix-package,代码行数:14,代码来源:AbstractCommonsMathDenseDoubleMatrix2D.java
示例8: fit
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
public void fit(List<Location> locations){
setLocations(locations);
int n = locations.size();
double[][] K = new double[n][n];
for(int i=0; i<n; i++){
Location loc1 = locations.get(i);
double[] x1 = ModelAdaptUtils.locationToVec(loc1);
for(int j=i; j<n; j++){
Location loc2 = locations.get(j);
double[] x2 = ModelAdaptUtils.locationToVec(loc2);
double k =kernel.computeKernel(x1, x2);
K[i][j] = k;
K[j][i] = k;
}
}
RealMatrix Kmat = MatrixUtils.createRealMatrix(K);
RealMatrix lambdamat = MatrixUtils.createRealIdentityMatrix(n).scalarMultiply(sigma_n*sigma_n); //Tentative treatment
RealMatrix Kymat = Kmat.add(lambdamat);
CholeskyDecomposition chol = new CholeskyDecomposition(Kymat);
RealMatrix Lmat = chol.getL();
double[] normalRands = new double[n];
for(int i=0; i<n; i++){
normalRands[i] = rand.nextGaussian();
}
this.y = Lmat.operate(normalRands);
RealMatrix invKymat = (new LUDecomposition(Kymat)).getSolver().getInverse();
this.alphas = invKymat.operate(y);
}
示例9: computeCholesky
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
/**
* Function to compute Cholesky decomposition of the given input matrix.
* The input must be a real symmetric positive-definite matrix.
*
* @param in commons-math3 Array2DRowRealMatrix
* @return matrix block
* @throws DMLRuntimeException if DMLRuntimeException occurs
*/
private static MatrixBlock computeCholesky(Array2DRowRealMatrix in)
throws DMLRuntimeException
{
if ( !in.isSquare() )
throw new DMLRuntimeException("Input to cholesky() must be square matrix -- given: a " + in.getRowDimension() + "x" + in.getColumnDimension() + " matrix.");
CholeskyDecomposition cholesky = new CholeskyDecomposition(in, 1e-14,
CholeskyDecomposition.DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD);
RealMatrix rmL = cholesky.getL();
return DataConverter.convertToMatrixBlock(rmL.getData());
}
示例10: correct
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
/**
* Correct the current state estimate with an actual measurement.
*
* @param z
* the measurement vector
* @throws NullArgumentException
* if the measurement vector is {@code null}
* @throws DimensionMismatchException
* if the dimension of the measurement vector does not fit
* @throws SingularMatrixException
* if the covariance matrix could not be inverted
*/
public void correct(final RealVector z)
throws NullArgumentException, DimensionMismatchException, SingularMatrixException {
// sanity checks
MathUtils.checkNotNull(z);
if (z.getDimension() != measurementMatrix.getRowDimension()) {
throw new DimensionMismatchException(z.getDimension(),
measurementMatrix.getRowDimension());
}
// S = H * P(k) - * H' + R
RealMatrix s = measurementMatrix.multiply(errorCovariance)
.multiply(measurementMatrixT)
.add(measurementModel.getMeasurementNoise());
// invert S
// as the error covariance matrix is a symmetric positive
// semi-definite matrix, we can use the cholesky decomposition
DecompositionSolver solver = new CholeskyDecomposition(s).getSolver();
RealMatrix invertedS = solver.getInverse();
// Inn = z(k) - H * xHat(k)-
RealVector innovation = z.subtract(measurementMatrix.operate(stateEstimation));
// calculate gain matrix
// K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
// K(k) = P(k)- * H' * S^-1
RealMatrix kalmanGain = errorCovariance.multiply(measurementMatrixT).multiply(invertedS);
// update estimate with measurement z(k)
// xHat(k) = xHat(k)- + K * Inn
stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));
// update covariance of prediction error
// P(k) = (I - K * H) * P(k)-
RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain.getRowDimension());
errorCovariance = identity.subtract(kalmanGain.multiply(measurementMatrix)).multiply(errorCovariance);
}
示例11: CholeskyDecompositionCommonsResult
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
/**
* Constructor.
* @param ch The result of the Cholesky decomposition.
*/
public CholeskyDecompositionCommonsResult(CholeskyDecomposition ch) {
ArgChecker.notNull(ch, "Cholesky decomposition");
_determinant = ch.getDeterminant();
_l = CommonsMathWrapper.unwrap(ch.getL());
_lt = CommonsMathWrapper.unwrap(ch.getLT());
_solver = ch.getSolver();
}
示例12: ellipticalSliceSampler
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
public static SampleLikelihood ellipticalSliceSampler(IntDoubleVector initial_pt, double initial_lnpdf, CholeskyDecomposition decomp, Function lnpdf) {
int D = lnpdf.getNumDimensions();
double [] x = new double[D];
for(int i=0; i<D; i++) x[i] = initial_pt.get(i);
RealMatrix init_val = MatrixUtils.createColumnRealMatrix(x);
RealMatrix L = decomp.getL();
RealMatrix r = MatrixUtils.createColumnRealMatrix(getNormalVector(D));
RealMatrix nu = L.multiply(r);
double hh = Math.log(Prng.nextDouble()) + initial_lnpdf;
// Set up the ellipse and the slice threshold
double phi = Prng.nextDouble()*2.0*Math.PI;
double phi_min = phi-2.0*Math.PI;
double phi_max = phi;
// Slice sampling loop
while(true) {
// Compute xx for proposed angle difference and check if it's on the slice
RealMatrix xx_prop = init_val.scalarMultiply(phi).add(nu.scalarMultiply(Math.sin(phi)));
double cur_lnpdf = lnpdf.getValue(new IntDoubleDenseVector(xx_prop.getColumn(0)));
if(cur_lnpdf > hh) {
return new SampleLikelihood(xx_prop.getColumnVector(0).toArray(), cur_lnpdf);
}
// Shrink slice to rejected point
if(phi > 0) {
phi_max = phi;
} else if(phi < 0) {
phi_min = phi;
} else {
throw new RuntimeException("Shrunk to current position and still not acceptable");
}
// Propose new angle difference
phi = Prng.nextDouble()*(phi_max - phi_min) + phi_min;
}
}
示例13: initialize
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
private void initialize() {
final int dim = scaleMatrix.getColumnDimension();
// Build gamma distributions for the diagonal
gammas = new GammaDistribution[dim];
for (int i = 0; i < dim; i++) {
gammas[i] = new GammaDistribution(df-i-.99/2, 2);
}
// Build the cholesky decomposition
cholesky = new CholeskyDecomposition(scaleMatrix);
}
示例14: correct
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
/**
* Correct the current state estimate with an actual measurement.
*
* @param z
* the measurement vector
* @throws NullArgumentException
* if the measurement vector is {@code null}
* @throws DimensionMismatchException
* if the dimension of the measurement vector does not fit
* @throws SingularMatrixException
* if the covariance matrix could not be inverted
*/
public void correct(final RealVector z) throws NullArgumentException,
DimensionMismatchException, SingularMatrixException
{
// sanity checks
MathUtils.checkNotNull(z);
if (z.getDimension() != measurementMatrix.getRowDimension())
{
throw new DimensionMismatchException(z.getDimension(),
measurementMatrix.getRowDimension());
}
// S = H * P(k) * H' + R
RealMatrix s = measurementMatrix.multiply(errorCovariance)
.multiply(measurementMatrixT)
.add(measurementModel.getMeasurementNoise());
// Inn = z(k) - H * xHat(k)-
RealVector innovation = z.subtract(measurementMatrix
.operate(stateEstimation));
// calculate gain matrix
// K(k) = P(k)- * H' * (H * P(k)- * H' + R)^-1
// K(k) = P(k)- * H' * S^-1
// instead of calculating the inverse of S we can rearrange the formula,
// and then solve the linear equation A x X = B with A = S', X = K' and
// B = (H * P)'
// K(k) * S = P(k)- * H'
// S' * K(k)' = H * P(k)-'
RealMatrix kalmanGain = new CholeskyDecomposition(s).getSolver()
.solve(measurementMatrix.multiply(errorCovariance.transpose()))
.transpose();
// update estimate with measurement z(k)
// xHat(k) = xHat(k)- + K * Inn
stateEstimation = stateEstimation.add(kalmanGain.operate(innovation));
// update covariance of prediction error
// P(k) = (I - K * H) * P(k)-
RealMatrix identity = MatrixUtils.createRealIdentityMatrix(kalmanGain
.getRowDimension());
errorCovariance = identity.subtract(
kalmanGain.multiply(measurementMatrix)).multiply(
errorCovariance);
}
示例15: XCD
import org.apache.commons.math3.linear.CholeskyDecomposition; //导入依赖的package包/类
/**
* Constructor
* @param matrix the input matrix
*/
XCD(RealMatrix matrix) {
this.cd = new CholeskyDecomposition(matrix);
this.l = LazyValue.of(() -> toDataFrame(cd.getL()));
}