当前位置: 首页>>代码示例>>Java>>正文


Java UniformRealDistribution类代码示例

本文整理汇总了Java中org.apache.commons.math3.distribution.UniformRealDistribution的典型用法代码示例。如果您正苦于以下问题:Java UniformRealDistribution类的具体用法?Java UniformRealDistribution怎么用?Java UniformRealDistribution使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


UniformRealDistribution类属于org.apache.commons.math3.distribution包,在下文中一共展示了UniformRealDistribution类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: testPolynomialFit

import org.apache.commons.math3.distribution.UniformRealDistribution; //导入依赖的package包/类
@Test
public void testPolynomialFit() {
    final Random randomizer = new Random(53882150042L);
    final RealDistribution rng = new UniformRealDistribution(-100, 100);
    rng.reseedRandomGenerator(64925784252L);

    final double[] coeff = { 12.9, -3.4, 2.1 }; // 12.9 - 3.4 x + 2.1 x^2
    final PolynomialFunction f = new PolynomialFunction(coeff);

    // Collect data from a known polynomial.
    final WeightedObservedPoints obs = new WeightedObservedPoints();
    for (int i = 0; i < 100; i++) {
        final double x = rng.sample();
        obs.add(x, f.value(x) + 0.1 * randomizer.nextGaussian());
    }

    final ParametricUnivariateFunction function = new PolynomialFunction.Parametric(); 
    // Start fit from initial guesses that are far from the optimal values.
    final SimpleCurveFitter fitter
        = SimpleCurveFitter.create(function,
                                   new double[] { -1e20, 3e15, -5e25 });
    final double[] best = fitter.fit(obs.toList());

    TestUtils.assertEquals("best != coeff", coeff, best, 2e-2);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:26,代码来源:SimpleCurveFitterTest.java

示例2: RandomCirclePointGenerator

import org.apache.commons.math3.distribution.UniformRealDistribution; //导入依赖的package包/类
/**
 * @param x Abscissa of the circle center.
 * @param y Ordinate of the circle center.
 * @param radius Radius of the circle.
 * @param xSigma Error on the x-coordinate of the circumference points.
 * @param ySigma Error on the y-coordinate of the circumference points.
 * @param seed RNG seed.
 */
public RandomCirclePointGenerator(double x,
                                  double y,
                                  double radius,
                                  double xSigma,
                                  double ySigma,
                                  long seed) {
    final RandomGenerator rng = new Well44497b(seed);
    this.radius = radius;
    cX = new NormalDistribution(rng, x, xSigma,
                                NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    cY = new NormalDistribution(rng, y, ySigma,
                                NormalDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    tP = new UniformRealDistribution(rng, 0, MathUtils.TWO_PI,
                                     UniformRealDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:24,代码来源:RandomCirclePointGenerator.java

示例3: testFit

import org.apache.commons.math3.distribution.UniformRealDistribution; //导入依赖的package包/类
@Test
public void testFit() {
    final RealDistribution rng = new UniformRealDistribution(-100, 100);
    rng.reseedRandomGenerator(64925784252L);

    final LevenbergMarquardtOptimizer optim = new LevenbergMarquardtOptimizer();
    final PolynomialFitter fitter = new PolynomialFitter(optim);
    final double[] coeff = { 12.9, -3.4, 2.1 }; // 12.9 - 3.4 x + 2.1 x^2
    final PolynomialFunction f = new PolynomialFunction(coeff);

    // Collect data from a known polynomial.
    for (int i = 0; i < 100; i++) {
        final double x = rng.sample();
        fitter.addObservedPoint(x, f.value(x));
    }

    // Start fit from initial guesses that are far from the optimal values.
    final double[] best = fitter.fit(new double[] { -1e-20, 3e15, -5e25 });

    TestUtils.assertEquals("best != coeff", coeff, best, 1e-12);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:22,代码来源:PolynomialFitterTest.java

示例4: testFit

import org.apache.commons.math3.distribution.UniformRealDistribution; //导入依赖的package包/类
@Test
public void testFit() {
    final RealDistribution rng = new UniformRealDistribution(-100, 100);
    rng.reseedRandomGenerator(64925784252L);

    final double[] coeff = { 12.9, -3.4, 2.1 }; // 12.9 - 3.4 x + 2.1 x^2
    final PolynomialFunction f = new PolynomialFunction(coeff);

    // Collect data from a known polynomial.
    final WeightedObservedPoints obs = new WeightedObservedPoints();
    for (int i = 0; i < 100; i++) {
        final double x = rng.sample();
        obs.add(x, f.value(x));
    }

    // Start fit from initial guesses that are far from the optimal values.
    final PolynomialCurveFitter fitter
        = PolynomialCurveFitter.create(0).withStartPoint(new double[] { -1e-20, 3e15, -5e25 });
    final double[] best = fitter.fit(obs.toList());

    TestUtils.assertEquals("best != coeff", coeff, best, 1e-12);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:23,代码来源:PolynomialCurveFitterTest.java

示例5: makeInitializers

import org.apache.commons.math3.distribution.UniformRealDistribution; //导入依赖的package包/类
/**
 * Creates the features' initializers: an approximate circle around the
 * barycentre of the cities.
 *
 * @return an array containing the two initializers.
 */
private FeatureInitializer[] makeInitializers() {
    // Barycentre.
    final double[] centre = barycentre(cities);
    // Largest distance from centre.
    final double radius = 0.5 * largestDistance(centre[0], centre[1], cities);

    final double omega = 2 * Math.PI / numberOfNeurons;
    final UnivariateFunction h1 = new HarmonicOscillator(radius, omega, 0);
    final UnivariateFunction h2 = new HarmonicOscillator(radius, omega, 0.5 * Math.PI);

    final UnivariateFunction f1 = FunctionUtils.add(h1, new Constant(centre[0]));
    final UnivariateFunction f2 = FunctionUtils.add(h2, new Constant(centre[1]));

    final RealDistribution u
        = new UniformRealDistribution(random, -0.05 * radius, 0.05 * radius);

    return new FeatureInitializer[] {
        FeatureInitializerFactory.randomize(u, FeatureInitializerFactory.function(f1, 0, 1)),
        FeatureInitializerFactory.randomize(u, FeatureInitializerFactory.function(f2, 0, 1))
    };
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:28,代码来源:TravellingSalesmanSolver.java

示例6: getUniformReal

import org.apache.commons.math3.distribution.UniformRealDistribution; //导入依赖的package包/类
@Override
public RandomNumberDistribution<Double> getUniformReal(
		final RandomNumberStream rng, final Number lower, final Number upper)
{
	final RealDistribution dist = new UniformRealDistribution(
			RandomNumberStream.Util.asCommonsRandomGenerator(rng),
			lower.doubleValue(), upper.doubleValue());
	return new RandomNumberDistribution<Double>()
	{
		@Override
		public Double draw()
		{
			return dist.sample();
		}
	};
}
 
开发者ID:krevelen,项目名称:coala,代码行数:17,代码来源:RandomDistributionFactoryImpl.java

示例7: testAssignement

import org.apache.commons.math3.distribution.UniformRealDistribution; //导入依赖的package包/类
@Test
public void testAssignement()
{
	int dc = 10;
	int hs = 20;
	
	UniformRealDistribution urd = new UniformRealDistribution(0, 1);
	int[] dist = DistributionAssignment.getAssignmentArray(dc, hs, urd);
	
	// check the length of the returned array
	Assert.assertEquals(dc, dist.length);
	
	int sum = 0;
	for (int i=0; i<dist.length; i++)
		sum += dist[i];
	
	Assert.assertEquals(hs, sum);
}
 
开发者ID:ecarlini,项目名称:smartfed,代码行数:19,代码来源:DistributionAssignmentTest.java

示例8: BM

import org.apache.commons.math3.distribution.UniformRealDistribution; //导入依赖的package包/类
public BM(int numClusters, int dimension, long randomSeed) {
    this.numClusters = numClusters;
    this.dimension = dimension;
    this.distributions = new BernoulliDistribution[numClusters][dimension];
    this.mixtureCoefficients = new double[numClusters];
    Arrays.fill(mixtureCoefficients,1.0/numClusters);
    this.logMixtureCoefficients = new double[numClusters];
    Arrays.fill(logMixtureCoefficients,Math.log(1.0/numClusters));
    Random random = new Random(randomSeed);
    RandomGenerator randomGenerator = RandomGeneratorFactory.createRandomGenerator(random);
    UniformRealDistribution uniform = new UniformRealDistribution(randomGenerator, 0.25,0.75);
    for (int k=0;k<numClusters;k++){
        for (int d=0;d<dimension;d++){
            double p = uniform.sample();
            distributions[k][d] = new BernoulliDistribution(p);
        }
    }
    this.logClusterConditioinalForEmpty = new double[numClusters];
    updateLogClusterConditioinalForEmpty();

    this.names = new ArrayList<>(dimension);
    for (int d=0;d<dimension;d++){
        names.add(""+d);
    }
}
 
开发者ID:cheng-li,项目名称:pyramid,代码行数:26,代码来源:BM.java

示例9: genUniform

import org.apache.commons.math3.distribution.UniformRealDistribution; //导入依赖的package包/类
private static List<Double> genUniform(DoubleGenerator dg, int size) {
    UniformRealDistribution ud = new UniformRealDistribution(dg.start, dg.end);
    List<Double> output = new ArrayList<>(size);
    for (int i = 0; i < size; ++i) {
        output.add(ud.sample());
    }
    return output;
}
 
开发者ID:kaz-Anova,项目名称:StackNet,代码行数:9,代码来源:DoubleGenerator.java


注:本文中的org.apache.commons.math3.distribution.UniformRealDistribution类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。