本文整理汇总了Java中org.apache.commons.math3.distribution.CauchyDistribution类的典型用法代码示例。如果您正苦于以下问题:Java CauchyDistribution类的具体用法?Java CauchyDistribution怎么用?Java CauchyDistribution使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
CauchyDistribution类属于org.apache.commons.math3.distribution包,在下文中一共展示了CauchyDistribution类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: getCauchy
import org.apache.commons.math3.distribution.CauchyDistribution; //导入依赖的package包/类
@Override
public RandomNumberDistribution<Double> getCauchy(
final RandomNumberStream rng, final Number median,
final Number scale)
{
final RealDistribution dist = new CauchyDistribution(
RandomNumberStream.Util.asCommonsRandomGenerator(rng),
median.doubleValue(), scale.doubleValue());
return new RandomNumberDistribution<Double>()
{
@Override
public Double draw()
{
return dist.sample();
}
};
}
示例2: testNextCauchy
import org.apache.commons.math3.distribution.CauchyDistribution; //导入依赖的package包/类
@Test
public void testNextCauchy() {
double[] quartiles = TestUtils.getDistributionQuartiles(new CauchyDistribution(1.2, 2.1));
long[] counts = new long[4];
randomData.reSeed(1000);
for (int i = 0; i < 1000; i++) {
double value = randomData.nextCauchy(1.2, 2.1);
TestUtils.updateCounts(value, counts, quartiles);
}
TestUtils.assertChiSquareAccept(expected, counts, 0.001);
}
示例3: logEmissionProbability
import org.apache.commons.math3.distribution.CauchyDistribution; //导入依赖的package包/类
/**
* Visible for the segmenter
*/
public static double logEmissionProbability(final Double data, final double log2CopyRatio, final double cauchyWidth) {
return new CauchyDistribution(null, log2CopyRatio, cauchyWidth).logDensity(data);
}
示例4: CopyRatioHMM
import org.apache.commons.math3.distribution.CauchyDistribution; //导入依赖的package包/类
/**
* @param log2CopyRatios array of log-2 copy ratios corresponding to the hidden states
* @param weights array of (real-space, not log) prior probabilities of each hidden state
* when memory of the previous state is lost. These may be unnormalized relative
* probabilities, which is useful when using variational Bayes.
* @param memoryLength when consecutive SNPs are a distance d bases apart, the prior probability
* for memory of the CNV state to be kept is exp(-d/memoryLength)
*/
public CopyRatioHMM(final List<Double> log2CopyRatios, final List<Double> weights,
final double memoryLength, final double logCoverageCauchyWidth) {
super(log2CopyRatios, weights, memoryLength);
this.logCoverageCauchyWidth = logCoverageCauchyWidth;
emissionDistributions = hiddenStates().stream()
.map(n -> new CauchyDistribution(null, log2CopyRatios.get(n), logCoverageCauchyWidth)).collect(Collectors.toList());
}
示例5: nextCauchy
import org.apache.commons.math3.distribution.CauchyDistribution; //导入依赖的package包/类
/**
* Generates a random value from the {@link CauchyDistribution Cauchy Distribution}.
*
* @param median the median of the Cauchy distribution
* @param scale the scale parameter of the Cauchy distribution
* @return random value sampled from the Cauchy(median, scale) distribution
*/
public double nextCauchy(double median, double scale) {
return new CauchyDistribution(getRandomGenerator(), median, scale,
CauchyDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample();
}
示例6: nextCauchy
import org.apache.commons.math3.distribution.CauchyDistribution; //导入依赖的package包/类
/**
* Generates a random value from the {@link CauchyDistribution Cauchy Distribution}.
* This implementation uses {@link #nextInversionDeviate(RealDistribution) inversion}
* to generate random values.
*
* @param median the median of the Cauchy distribution
* @param scale the scale parameter of the Cauchy distribution
* @return random value sampled from the Cauchy(median, scale) distribution
* @since 2.2
*/
public double nextCauchy(double median, double scale) {
return nextInversionDeviate(new CauchyDistribution(median, scale));
}
示例7: nextCauchy
import org.apache.commons.math3.distribution.CauchyDistribution; //导入依赖的package包/类
/**
* Generates a random value from the {@link CauchyDistribution Cauchy Distribution}.
*
* @param median the median of the Cauchy distribution
* @param scale the scale parameter of the Cauchy distribution
* @return random value sampled from the Cauchy(median, scale) distribution
*/
public double nextCauchy(double median, double scale) {
return new CauchyDistribution(getRan(), median, scale,
CauchyDistribution.DEFAULT_INVERSE_ABSOLUTE_ACCURACY).sample();
}