本文整理汇总了Java中org.apache.commons.math.stat.descriptive.moment.Mean类的典型用法代码示例。如果您正苦于以下问题:Java Mean类的具体用法?Java Mean怎么用?Java Mean使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
Mean类属于org.apache.commons.math.stat.descriptive.moment包,在下文中一共展示了Mean类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: addValue
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
/**
* Add a value to the data
*
* @param value the value to add
*/
public void addValue(double value) {
sumImpl.increment(value);
sumsqImpl.increment(value);
minImpl.increment(value);
maxImpl.increment(value);
sumLogImpl.increment(value);
secondMoment.increment(value);
// If mean, variance or geomean have been overridden,
// need to increment these
if (!(meanImpl instanceof Mean)) {
meanImpl.increment(value);
}
if (!(varianceImpl instanceof Variance)) {
varianceImpl.increment(value);
}
if (!(geoMeanImpl instanceof GeometricMean)) {
geoMeanImpl.increment(value);
}
n++;
}
示例2: MultivariateSummaryStatistics
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
/**
* Construct a MultivariateSummaryStatistics instance
* @param k dimension of the data
* @param isCovarianceBiasCorrected if true, the unbiased sample
* covariance is computed, otherwise the biased population covariance
* is computed
*/
public MultivariateSummaryStatistics(int k, boolean isCovarianceBiasCorrected) {
this.k = k;
sumImpl = new StorelessUnivariateStatistic[k];
sumSqImpl = new StorelessUnivariateStatistic[k];
minImpl = new StorelessUnivariateStatistic[k];
maxImpl = new StorelessUnivariateStatistic[k];
sumLogImpl = new StorelessUnivariateStatistic[k];
geoMeanImpl = new StorelessUnivariateStatistic[k];
meanImpl = new StorelessUnivariateStatistic[k];
for (int i = 0; i < k; ++i) {
sumImpl[i] = new Sum();
sumSqImpl[i] = new SumOfSquares();
minImpl[i] = new Min();
maxImpl[i] = new Max();
sumLogImpl[i] = new SumOfLogs();
geoMeanImpl[i] = new GeometricMean();
meanImpl[i] = new Mean();
}
covarianceImpl =
new VectorialCovariance(k, isCovarianceBiasCorrected);
}
示例3: testInteraction
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
public void testInteraction() {
FourthMoment m4 = new FourthMoment();
Mean m = new Mean(m4);
Variance v = new Variance(m4);
Skewness s= new Skewness(m4);
Kurtosis k = new Kurtosis(m4);
for (int i = 0; i < testArray.length; i++){
m4.increment(testArray[i]);
}
assertEquals(mean,m.getResult(),tolerance);
assertEquals(var,v.getResult(),tolerance);
assertEquals(skew ,s.getResult(),tolerance);
assertEquals(kurt,k.getResult(),tolerance);
}
示例4: testSetterInjection
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
public void testSetterInjection() throws Exception {
SummaryStatistics u = createSummaryStatistics();
u.setMeanImpl(new Sum());
u.setSumLogImpl(new Sum());
u.addValue(1);
u.addValue(3);
assertEquals(4, u.getMean(), 1E-14);
assertEquals(4, u.getSumOfLogs(), 1E-14);
assertEquals(Math.exp(2), u.getGeometricMean(), 1E-14);
u.clear();
u.addValue(1);
u.addValue(2);
assertEquals(3, u.getMean(), 1E-14);
u.clear();
u.setMeanImpl(new Mean()); // OK after clear
}
示例5: testSetterInjection
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
public void testSetterInjection() throws Exception {
MultivariateSummaryStatistics u = new MultivariateSummaryStatistics(2, true);
u.setMeanImpl(new StorelessUnivariateStatistic[] {
new sumMean(), new sumMean()
});
u.addValue(new double[] { 1, 2 });
u.addValue(new double[] { 3, 4 });
assertEquals(4, u.getMean()[0], 1E-14);
assertEquals(6, u.getMean()[1], 1E-14);
u.clear();
u.addValue(new double[] { 1, 2 });
u.addValue(new double[] { 3, 4 });
assertEquals(4, u.getMean()[0], 1E-14);
assertEquals(6, u.getMean()[1], 1E-14);
u.clear();
u.setMeanImpl(new StorelessUnivariateStatistic[] {
new Mean(), new Mean()
}); // OK after clear
u.addValue(new double[] { 1, 2 });
u.addValue(new double[] { 3, 4 });
assertEquals(2, u.getMean()[0], 1E-14);
assertEquals(3, u.getMean()[1], 1E-14);
}
示例6: reduce
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
public void reduce(Text key,
Iterator<DoubleWritable> values,
OutputCollector<AvroWrapper<StockAvg>,
NullWritable> output,
Reporter reporter) throws IOException {
Mean mean = new Mean();
while (values.hasNext()) {
mean.increment(values.next().get());
}
StockAvg avg = new StockAvg();
avg.setSymbol(key.toString());
avg.setAvg(mean.getResult());
output.collect(new AvroWrapper<StockAvg>(avg),
NullWritable.get());
}
示例7: calculateCentroid
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
/**
* Calculates the centroid of all given points in a nD space (assumes that
* all points have n coordinates). Each coordinate of the centroid is a mean
* of all values of the same coordinate of each point.
*
* @param points all points
* @return the centroid of all given points
*/
public Vector<Double> calculateCentroid( List<Vector<Double>> points ) {
List<Mean> coordinateMeans = new ArrayList<Mean>();
for ( int i = 0; i < points.get( 0 ).size(); ++i ) {
coordinateMeans.add( new Mean() );
}
for ( Vector<Double> point : points ) {
for ( int i = 0; i < point.size(); ++i ) {
coordinateMeans.get( i ).increment( point.get( i ) );
}
}
Vector<Double> centroid = new Vector<Double>();
for ( Mean mean : coordinateMeans ) {
centroid.add( mean.getResult() );
}
return centroid;
}
示例8: addValue
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
/**
* Add a value to the data
* @param value the value to add
*/
public void addValue(double value) {
sumImpl.increment(value);
sumsqImpl.increment(value);
minImpl.increment(value);
maxImpl.increment(value);
sumLogImpl.increment(value);
secondMoment.increment(value);
// If mean, variance or geomean have been overridden,
// need to increment these
if (!(meanImpl instanceof Mean)) {
meanImpl.increment(value);
}
if (!(varianceImpl instanceof Variance)) {
varianceImpl.increment(value);
}
if (!(geoMeanImpl instanceof GeometricMean)) {
geoMeanImpl.increment(value);
}
n++;
}
示例9: covariance
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
/**
* Computes the covariance between the two arrays.
*
* <p>Array lengths must match and the common length must be at least 2.</p>
*
* @param xArray first data array
* @param yArray second data array
* @param biasCorrected if true, returned value will be bias-corrected
* @return returns the covariance for the two arrays
* @throws IllegalArgumentException if the arrays lengths do not match or
* there is insufficient data
*/
public double covariance(final double[] xArray, final double[] yArray, boolean biasCorrected)
throws IllegalArgumentException {
Mean mean = new Mean();
double result = 0d;
int length = xArray.length;
if(length == yArray.length && length > 1) {
double xMean = mean.evaluate(xArray);
double yMean = mean.evaluate(yArray);
for (int i = 0; i < length; i++) {
double xDev = xArray[i] - xMean;
double yDev = yArray[i] - yMean;
result += (xDev * yDev - result) / (i + 1);
}
}
else {
throw MathRuntimeException.createIllegalArgumentException(
"arrays must have the same length and both must have at " +
"least two elements. xArray has size {0}, yArray has {1} elements",
length, yArray.length);
}
return biasCorrected ? result * ((double) length / (double)(length - 1)) : result;
}
示例10: testInteraction
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
public void testInteraction() {
FourthMoment m4 = new FourthMoment();
Mean m = new Mean(m4);
Variance v = new Variance(m4);
Skewness s= new Skewness(m4);
Kurtosis k = new Kurtosis(m4);
for (int i = 0; i < testArray.length; i++){
m4.increment(testArray[i]);
}
assertEquals(mean,m.getResult(),tolerance);
assertEquals(var,v.getResult(),tolerance);
assertEquals(skew ,s.getResult(),tolerance);
assertEquals(kurt,k.getResult(),tolerance);
}
示例11: covariance
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
/**
* Computes the covariance between the two arrays.
*
* <p>Array lengths must match and the common length must be at least 2.</p>
*
* @param xArray first data array
* @param yArray second data array
* @param biasCorrected if true, returned value will be bias-corrected
* @return returns the covariance for the two arrays
* @throws IllegalArgumentException if the arrays lengths do not match or
* there is insufficient data
*/
public double covariance(final double[] xArray, final double[] yArray, boolean biasCorrected)
throws IllegalArgumentException {
Mean mean = new Mean();
double result = 0d;
int length = xArray.length;
if (length != yArray.length) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, length, yArray.length);
} else if (length < 2) {
throw MathRuntimeException.createIllegalArgumentException(
LocalizedFormats.INSUFFICIENT_DIMENSION, length, 2);
} else {
double xMean = mean.evaluate(xArray);
double yMean = mean.evaluate(yArray);
for (int i = 0; i < length; i++) {
double xDev = xArray[i] - xMean;
double yDev = yArray[i] - yMean;
result += (xDev * yDev - result) / (i + 1);
}
}
return biasCorrected ? result * ((double) length / (double)(length - 1)) : result;
}
示例12: testSetterInjection
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
public void testSetterInjection() throws Exception {
SummaryStatistics u = createSummaryStatistics();
u.setMeanImpl(new Sum());
u.setSumLogImpl(new Sum());
u.addValue(1);
u.addValue(3);
assertEquals(4, u.getMean(), 1E-14);
assertEquals(4, u.getSumOfLogs(), 1E-14);
assertEquals(FastMath.exp(2), u.getGeometricMean(), 1E-14);
u.clear();
u.addValue(1);
u.addValue(2);
assertEquals(3, u.getMean(), 1E-14);
u.clear();
u.setMeanImpl(new Mean()); // OK after clear
}
示例13: testSetterInjection
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
@Test
public void testSetterInjection() throws Exception {
MultivariateSummaryStatistics u = createMultivariateSummaryStatistics(2, true);
u.setMeanImpl(new StorelessUnivariateStatistic[] {
new sumMean(), new sumMean()
});
u.addValue(new double[] { 1, 2 });
u.addValue(new double[] { 3, 4 });
Assert.assertEquals(4, u.getMean()[0], 1E-14);
Assert.assertEquals(6, u.getMean()[1], 1E-14);
u.clear();
u.addValue(new double[] { 1, 2 });
u.addValue(new double[] { 3, 4 });
Assert.assertEquals(4, u.getMean()[0], 1E-14);
Assert.assertEquals(6, u.getMean()[1], 1E-14);
u.clear();
u.setMeanImpl(new StorelessUnivariateStatistic[] {
new Mean(), new Mean()
}); // OK after clear
u.addValue(new double[] { 1, 2 });
u.addValue(new double[] { 3, 4 });
Assert.assertEquals(2, u.getMean()[0], 1E-14);
Assert.assertEquals(3, u.getMean()[1], 1E-14);
Assert.assertEquals(2, u.getDimension());
}
示例14: testInteraction
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
@Test
public void testInteraction() {
FourthMoment m4 = new FourthMoment();
Mean m = new Mean(m4);
Variance v = new Variance(m4);
Skewness s= new Skewness(m4);
Kurtosis k = new Kurtosis(m4);
for (int i = 0; i < testArray.length; i++){
m4.increment(testArray[i]);
}
Assert.assertEquals(mean,m.getResult(),tolerance);
Assert.assertEquals(var,v.getResult(),tolerance);
Assert.assertEquals(skew ,s.getResult(),tolerance);
Assert.assertEquals(kurt,k.getResult(),tolerance);
}
示例15: testSetterInjection
import org.apache.commons.math.stat.descriptive.moment.Mean; //导入依赖的package包/类
@Test
public void testSetterInjection() throws Exception {
SummaryStatistics u = createSummaryStatistics();
u.setMeanImpl(new Sum());
u.setSumLogImpl(new Sum());
u.addValue(1);
u.addValue(3);
Assert.assertEquals(4, u.getMean(), 1E-14);
Assert.assertEquals(4, u.getSumOfLogs(), 1E-14);
Assert.assertEquals(FastMath.exp(2), u.getGeometricMean(), 1E-14);
u.clear();
u.addValue(1);
u.addValue(2);
Assert.assertEquals(3, u.getMean(), 1E-14);
u.clear();
u.setMeanImpl(new Mean()); // OK after clear
}