本文整理汇总了Java中org.apache.calcite.plan.RelOptPlanner类的典型用法代码示例。如果您正苦于以下问题:Java RelOptPlanner类的具体用法?Java RelOptPlanner怎么用?Java RelOptPlanner使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
RelOptPlanner类属于org.apache.calcite.plan包,在下文中一共展示了RelOptPlanner类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: setupMocks
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
@Before
public void setupMocks() {
context = Mockito.mock(Context.class);
planner = Mockito.mock(RelOptPlanner.class);
relTraitSet = RelTraitSet.createEmpty();
superFactory = Mockito.mock(JdbcRelBuilderFactoryFactory.class);
miniFactory = Mockito.mock(JdbcRelBuilderFactory.class);
rule = Mockito.mock(ForcedRule.class);
program = new ForcedRulesProgram(superFactory, rule);
inNode = Mockito.mock(RelNode.class);
relOptMaterializationList = Arrays.asList();
relOptLatticeList = Arrays.asList();
Mockito.doReturn(context).when(planner).getContext();
Mockito.doReturn(miniFactory).when(superFactory).create(Mockito.same(context));
}
示例2: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner) {
if (PrelUtil.getSettings(getCluster()).useDefaultCosting()) {
return super.computeSelfCost(planner).multiplyBy(.1);
}
RelNode child = this.getInput();
double inputRows = RelMetadataQuery.getRowCount(child);
int rowWidth = child.getRowType().getFieldCount() * DrillCostBase.AVG_FIELD_WIDTH;
double hashCpuCost = DrillCostBase.HASH_CPU_COST * inputRows * distFields.size();
double svrCpuCost = DrillCostBase.SVR_CPU_COST * inputRows;
double mergeCpuCost = DrillCostBase.COMPARE_CPU_COST * inputRows * (Math.log(numEndPoints)/Math.log(2));
double networkCost = DrillCostBase.BYTE_NETWORK_COST * inputRows * rowWidth;
DrillCostFactory costFactory = (DrillCostFactory)planner.getCostFactory();
return costFactory.makeCost(inputRows, hashCpuCost + svrCpuCost + mergeCpuCost, 0, networkCost);
}
示例3: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner) {
if(PrelUtil.getSettings(getCluster()).useDefaultCosting()) {
return super.computeSelfCost(planner).multiplyBy(.1);
}
double leftRowCount = RelMetadataQuery.getRowCount(this.getLeft());
double rightRowCount = RelMetadataQuery.getRowCount(this.getRight());
double nljFactor = PrelUtil.getSettings(getCluster()).getNestedLoopJoinFactor();
// cpu cost of evaluating each leftkey=rightkey join condition
double joinConditionCost = DrillCostBase.COMPARE_CPU_COST * this.getLeftKeys().size();
double cpuCost = joinConditionCost * (leftRowCount * rightRowCount) * nljFactor;
DrillCostFactory costFactory = (DrillCostFactory) planner.getCostFactory();
return costFactory.makeCost(leftRowCount * rightRowCount, cpuCost, 0, 0, 0);
}
示例4: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
/**
* A SingleMergeExchange processes a total of M rows coming from N
* sorted input streams (from N senders) and merges them into a single
* output sorted stream. For costing purposes we can assume each sender
* is sending M/N rows to a single receiver.
* (See DrillCostBase for symbol notations)
* C = CPU cost of SV remover for M/N rows
* + Network cost of sending M/N rows to 1 destination.
* So, C = (s * M/N) + (w * M/N)
* Cost of merging M rows coming from N senders = (M log2 N) * c
* Total cost = N * C + (M log2 N) * c
*/
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner) {
if (PrelUtil.getSettings(getCluster()).useDefaultCosting()) {
return super.computeSelfCost(planner).multiplyBy(.1);
}
RelNode child = this.getInput();
double inputRows = RelMetadataQuery.getRowCount(child);
int rowWidth = child.getRowType().getFieldCount() * DrillCostBase.AVG_FIELD_WIDTH;
double svrCpuCost = DrillCostBase.SVR_CPU_COST * inputRows;
double networkCost = DrillCostBase.BYTE_NETWORK_COST * inputRows * rowWidth;
int numEndPoints = PrelUtil.getSettings(getCluster()).numEndPoints();
double mergeCpuCost = DrillCostBase.COMPARE_CPU_COST * inputRows * (Math.log(numEndPoints)/Math.log(2));
DrillCostFactory costFactory = (DrillCostFactory)planner.getCostFactory();
return costFactory.makeCost(inputRows, svrCpuCost + mergeCpuCost, 0, networkCost);
}
示例5: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner) {
if (PrelUtil.getSettings(getCluster()).useDefaultCosting()) {
return super.computeSelfCost(planner).multiplyBy(.1);
}
RelNode child = this.getInput();
double inputRows = RelMetadataQuery.getRowCount(child);
int rowWidth = child.getRowType().getFieldCount() * DrillCostBase.AVG_FIELD_WIDTH;
double rangePartitionCpuCost = DrillCostBase.RANGE_PARTITION_CPU_COST * inputRows;
double svrCpuCost = DrillCostBase.SVR_CPU_COST * inputRows;
double networkCost = DrillCostBase.BYTE_NETWORK_COST * inputRows * rowWidth;
DrillCostFactory costFactory = (DrillCostFactory)planner.getCostFactory();
return costFactory.makeCost(inputRows, rangePartitionCpuCost + svrCpuCost, 0, networkCost);
}
示例6: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner) {
if(PrelUtil.getSettings(getCluster()).useDefaultCosting()) {
//We use multiplier 0.05 for TopN operator, and 0.1 for Sort, to make TopN a preferred choice.
return super.computeSelfCost(planner).multiplyBy(.1);
}
RelNode child = this.getInput();
double inputRows = RelMetadataQuery.getRowCount(child);
// int rowWidth = child.getRowType().getPrecision();
int numSortFields = this.collation.getFieldCollations().size();
double cpuCost = DrillCostBase.COMPARE_CPU_COST * numSortFields * inputRows * (Math.log(inputRows)/Math.log(2));
double diskIOCost = 0; // assume in-memory for now until we enforce operator-level memory constraints
// TODO: use rowWidth instead of avgFieldWidth * numFields
// avgFieldWidth * numFields * inputRows
double numFields = this.getRowType().getFieldCount();
long fieldWidth = PrelUtil.getPlannerSettings(planner).getOptions()
.getOption(ExecConstants.AVERAGE_FIELD_WIDTH_KEY).num_val;
double memCost = fieldWidth * numFields * inputRows;
DrillCostFactory costFactory = (DrillCostFactory) planner.getCostFactory();
return costFactory.makeCost(inputRows, cpuCost, diskIOCost, 0, memCost);
}
示例7: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
/**
* HashToRandomExchange processes M input rows and hash partitions them
* based on computing a hash value on the distribution fields.
* If there are N nodes (endpoints), we can assume for costing purposes
* on average each sender will send M/N rows to 1 destination endpoint.
* (See DrillCostBase for symbol notations)
* Include impact of skewness of distribution : the more keys used, the less likely the distribution will be skewed.
* The hash cpu cost will be proportional to 1 / #_keys.
* C = CPU cost of hashing k fields of M/N rows
* + CPU cost of SV remover for M/N rows
* + Network cost of sending M/N rows to 1 destination.
* So, C = (h * 1/k * M/N) + (s * M/N) + (w * M/N)
* Total cost = N * C
*/
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner) {
if (PrelUtil.getSettings(getCluster()).useDefaultCosting()) {
return super.computeSelfCost(planner).multiplyBy(.1);
}
RelNode child = this.getInput();
double inputRows = RelMetadataQuery.getRowCount(child);
int rowWidth = child.getRowType().getFieldCount() * DrillCostBase.AVG_FIELD_WIDTH;
double hashCpuCost = DrillCostBase.HASH_CPU_COST * inputRows / fields.size();
double svrCpuCost = DrillCostBase.SVR_CPU_COST * inputRows;
double networkCost = DrillCostBase.BYTE_NETWORK_COST * inputRows * rowWidth;
DrillCostFactory costFactory = (DrillCostFactory)planner.getCostFactory();
return costFactory.makeCost(inputRows, hashCpuCost + svrCpuCost, 0, networkCost);
}
示例8: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
/**
* In a BroadcastExchange, each sender is sending data to N receivers (for costing
* purposes we assume it is also sending to itself).
*/
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner) {
if(PrelUtil.getSettings(getCluster()).useDefaultCosting()) {
return super.computeSelfCost(planner).multiplyBy(.1);
}
RelNode child = this.getInput();
final int numEndPoints = PrelUtil.getSettings(getCluster()).numEndPoints();
final double broadcastFactor = PrelUtil.getSettings(getCluster()).getBroadcastFactor();
final double inputRows = RelMetadataQuery.getRowCount(child);
final int rowWidth = child.getRowType().getFieldCount() * DrillCostBase.AVG_FIELD_WIDTH;
final double cpuCost = broadcastFactor * DrillCostBase.SVR_CPU_COST * inputRows ;
final double networkCost = broadcastFactor * DrillCostBase.BYTE_NETWORK_COST * inputRows * rowWidth * numEndPoints;
return new DrillCostBase(inputRows, cpuCost, 0, networkCost);
}
示例9: computeCartesianJoinCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
protected RelOptCost computeCartesianJoinCost(RelOptPlanner planner) {
final double probeRowCount = RelMetadataQuery.getRowCount(this.getLeft());
final double buildRowCount = RelMetadataQuery.getRowCount(this.getRight());
final DrillCostFactory costFactory = (DrillCostFactory) planner.getCostFactory();
final double mulFactor = 10000; // This is a magic number,
// just to make sure Cartesian Join is more expensive
// than Non-Cartesian Join.
final int keySize = 1 ; // assume having 1 join key, when estimate join cost.
final DrillCostBase cost = (DrillCostBase) computeHashJoinCostWithKeySize(planner, keySize).multiplyBy(mulFactor);
// Cartesian join row count will be product of two inputs. The other factors come from the above estimated DrillCost.
return costFactory.makeCost(
buildRowCount * probeRowCount,
cost.getCpu(),
cost.getIo(),
cost.getNetwork(),
cost.getMemory() );
}
示例10: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner, RelMetadataQuery relMetadataQuery) {
for (AggregateCall aggCall : getAggCallList()) {
// For avg, stddev_pop, stddev_samp, var_pop and var_samp, the ReduceAggregatesRule is supposed
// to convert them to use sum and count. Here, we make the cost of the original functions high
// enough such that the planner does not choose them and instead chooses the rewritten functions.
if (aggCall.getAggregation().getKind() == SqlKind.AVG
|| aggCall.getAggregation().getKind() == SqlKind.STDDEV_SAMP
|| aggCall.getAggregation().getKind() == SqlKind.STDDEV_POP
|| aggCall.getAggregation().getKind() == SqlKind.VAR_POP
|| aggCall.getAggregation().getKind() == SqlKind.VAR_SAMP) {
return planner.getCostFactory().makeHugeCost();
}
}
final double rowCount = relMetadataQuery.getRowCount(this);
final double childRowCount = relMetadataQuery.getRowCount(this.getInput());
// Aggregates with more aggregate functions cost a bit more
float multiplier = 1f + (float) aggCalls.size() * 0.125f;
return ((Factory) planner.getCostFactory()).makeCost(rowCount,childRowCount * multiplier * DremioCost.FUNC_CPU_COST, 0, 0);
}
示例11: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner, RelMetadataQuery mq) {
if (PrelUtil.getSettings(getCluster()).useDefaultCosting()) {
return super.computeSelfCost(planner).multiplyBy(.1);
}
RelNode child = this.getInput();
double inputRows = mq.getRowCount(child);
int rowWidth = child.getRowType().getFieldCount() * DremioCost.AVG_FIELD_WIDTH;
double hashCpuCost = DremioCost.HASH_CPU_COST * inputRows * distFields.size();
double svrCpuCost = DremioCost.SVR_CPU_COST * inputRows;
double mergeCpuCost = DremioCost.COMPARE_CPU_COST * inputRows * (Math.log(numEndPoints)/Math.log(2));
double networkCost = DremioCost.BYTE_NETWORK_COST * inputRows * rowWidth;
Factory costFactory = (Factory)planner.getCostFactory();
return costFactory.makeCost(inputRows, hashCpuCost + svrCpuCost + mergeCpuCost, 0, networkCost);
}
示例12: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner, RelMetadataQuery mq) {
if(PrelUtil.getSettings(getCluster()).useDefaultCosting()) {
return super.computeSelfCost(planner).multiplyBy(.1);
}
double leftRowCount = mq.getRowCount(this.getLeft());
double rightRowCount = mq.getRowCount(this.getRight());
double nljFactor = PrelUtil.getSettings(getCluster()).getNestedLoopJoinFactor();
// cpu cost of evaluating each leftkey=rightkey join condition
double joinConditionCost = DremioCost.COMPARE_CPU_COST * this.getLeftKeys().size();
double cpuCost = joinConditionCost * (leftRowCount * rightRowCount) * nljFactor;
Factory costFactory = (Factory) planner.getCostFactory();
return costFactory.makeCost(leftRowCount * rightRowCount, cpuCost, 0, 0, 0);
}
示例13: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
/**
* A SingleMergeExchange processes a total of M rows coming from N
* sorted input streams (from N senders) and merges them into a single
* output sorted stream. For costing purposes we can assume each sender
* is sending M/N rows to a single receiver.
* (See DremioCost for symbol notations)
* C = CPU cost of SV remover for M/N rows
* + Network cost of sending M/N rows to 1 destination.
* So, C = (s * M/N) + (w * M/N)
* Cost of merging M rows coming from N senders = (M log2 N) * c
* Total cost = N * C + (M log2 N) * c
*/
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner, RelMetadataQuery mq) {
if (PrelUtil.getSettings(getCluster()).useDefaultCosting()) {
return super.computeSelfCost(planner).multiplyBy(.1);
}
RelNode child = this.getInput();
double inputRows = mq.getRowCount(child);
int rowWidth = child.getRowType().getFieldCount() * DremioCost.AVG_FIELD_WIDTH;
double svrCpuCost = DremioCost.SVR_CPU_COST * inputRows;
double networkCost = DremioCost.BYTE_NETWORK_COST * inputRows * rowWidth;
int numEndPoints = PrelUtil.getSettings(getCluster()).numEndPoints();
double mergeCpuCost = DremioCost.COMPARE_CPU_COST * inputRows * (Math.log(numEndPoints)/Math.log(2));
Factory costFactory = (Factory)planner.getCostFactory();
return costFactory.makeCost(inputRows, svrCpuCost + mergeCpuCost, 0, networkCost);
}
示例14: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner, RelMetadataQuery mq) {
if (PrelUtil.getSettings(getCluster()).useDefaultCosting()) {
return super.computeSelfCost(planner).multiplyBy(.1);
}
RelNode child = this.getInput();
double inputRows = mq.getRowCount(child);
int rowWidth = child.getRowType().getFieldCount() * DremioCost.AVG_FIELD_WIDTH;
double rangePartitionCpuCost = DremioCost.RANGE_PARTITION_CPU_COST * inputRows;
double svrCpuCost = DremioCost.SVR_CPU_COST * inputRows;
double networkCost = DremioCost.BYTE_NETWORK_COST * inputRows * rowWidth;
Factory costFactory = (Factory)planner.getCostFactory();
return costFactory.makeCost(inputRows, rangePartitionCpuCost + svrCpuCost, 0, networkCost);
}
示例15: computeSelfCost
import org.apache.calcite.plan.RelOptPlanner; //导入依赖的package包/类
/**
* Sends a copy of each batch to one node (same as the data size)
*/
@Override
public RelOptCost computeSelfCost(RelOptPlanner planner, RelMetadataQuery mq) {
if(PrelUtil.getSettings(getCluster()).useDefaultCosting()) {
return super.computeSelfCost(planner).multiplyBy(.1);
}
RelNode child = this.getInput();
final double inputRows = mq.getRowCount(child);
final int rowWidth = child.getRowType().getFieldCount() * DremioCost.AVG_FIELD_WIDTH;
final double cpuCost = DremioCost.SVR_CPU_COST * inputRows;
final double networkCost = DremioCost.BYTE_NETWORK_COST * inputRows * rowWidth;
return new DremioCost(inputRows, cpuCost, 0, networkCost);
}