当前位置: 首页>>代码示例>>Java>>正文


Java DoccatModel类代码示例

本文整理汇总了Java中opennlp.tools.doccat.DoccatModel的典型用法代码示例。如果您正苦于以下问题:Java DoccatModel类的具体用法?Java DoccatModel怎么用?Java DoccatModel使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


DoccatModel类属于opennlp.tools.doccat包,在下文中一共展示了DoccatModel类的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: getNLPModel

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
public static DoccatModel getNLPModel(File openNLPTraining) throws IOException {
	DoccatModel model = null;

	FeatureGenerator[] def = { new BagOfWordsFeatureGenerator() };
	WhitespaceTokenizer tokenizer = WhitespaceTokenizer.INSTANCE;

	DoccatFactory factory = new DoccatFactory(tokenizer, def);
	InputStreamFactory isf = new MarkableFileInputStreamFactory(openNLPTraining);
	ObjectStream<String> lineStream = new PlainTextByLineStream(isf, "UTF-8");
	ObjectStream<DocumentSample> sampleStream = new DocumentSampleStream(lineStream);

	TrainingParameters params = TrainingParameters.defaultParams();
	System.out.println(params.algorithm());
	params.put(TrainingParameters.CUTOFF_PARAM, Integer.toString(0));
	params.put(TrainingParameters.ITERATIONS_PARAM, Integer.toString(4000));

	model = DocumentCategorizerME.train("en", sampleStream, params, factory);
	
	evaluateDoccatModel(model, openNLPTraining);

	return model;

}
 
开发者ID:SOBotics,项目名称:SOCVFinder,代码行数:24,代码来源:ModelCreator.java

示例2: SentimentAnalyser

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
public SentimentAnalyser() {
    try (InputStream modelStream = SentimentAnalyser.class.getResourceAsStream(MODEL)) {
        DoccatModel tokenizerModel = new DoccatModel(modelStream);
        categorizer = new DocumentCategorizerME(tokenizerModel);
    } catch (IOException e) {
        LOGGER.error("an error occurred while getting categories", e);
        throw new IllegalStateException(e);
    }
}
 
开发者ID:kalnee,项目名称:trivor-nlp,代码行数:10,代码来源:SentimentAnalyser.java

示例3: main2

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
public static void main2(String[] args) throws IOException {

		// Weka arff model
		Instances dataSet = getWekaDataSet();
		BufferedWriter writer = new BufferedWriter(new FileWriter(MODEL_FOLDER + "/comments.arff"));
		writer.write(dataSet.toString());
		writer.flush();
		writer.close();

		// Open nlp model
		File traningFileNlp = new File(MODEL_FOLDER + "/openNPLTraining.txt");
		setupNLPTraning(traningFileNlp);

		DoccatModel model = getNLPModel(traningFileNlp);
		OutputStream modelOut = null;
		try {
			modelOut = new BufferedOutputStream(new FileOutputStream(MODEL_FOLDER + "/open_comments.model"));
			model.serialize(modelOut);
		} catch (IOException e) {
			// Failed to save model
			e.printStackTrace();
		} finally {
			if (modelOut != null) {
				modelOut.close();
			}
		}

	}
 
开发者ID:SOBotics,项目名称:SOCVFinder,代码行数:29,代码来源:ModelCreator.java

示例4: evaluateDoccatModel

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
public static void evaluateDoccatModel(DoccatModel model,File openNLPTraining) throws IOException{
	InputStreamFactory isf = new MarkableFileInputStreamFactory(openNLPTraining);
	ObjectStream<String> lineStream = new PlainTextByLineStream(isf, "UTF-8");
	ObjectStream<DocumentSample> sampleStream = new DocumentSampleStream(lineStream);

	List<EvaluationMonitor<DocumentSample>> listeners = new LinkedList<EvaluationMonitor<DocumentSample>>();
    listeners.add(new DoccatEvaluationErrorListener());
    listeners.add(new DoccatFineGrainedReportListener());
    
	DocumentCategorizerEvaluator eval = new  DocumentCategorizerEvaluator(new DocumentCategorizerME(model),listeners.toArray(new DoccatEvaluationMonitor[listeners.size()]));
	eval.evaluate(sampleStream);
	System.out.println(eval);
	
}
 
开发者ID:SOBotics,项目名称:SOCVFinder,代码行数:15,代码来源:ModelCreator.java

示例5: classify

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
public String classify(String summary) {
	
	InputStream inputStrean = null;
	
	try {
		
		inputStrean = new FileInputStream(Paths.get(bin).toFile());
		DoccatModel doccatModel = new DoccatModel(inputStrean);
		DocumentCategorizerME myCategorizer = new DocumentCategorizerME(doccatModel);
		double[] outcomes = myCategorizer.categorize(summary);
		String category = myCategorizer.getBestCategory(outcomes);
		
		LOGGER.info(category);
		
		return Type.valueOf(category).getType();
		
	} catch (IOException e) {
		LOGGER.error(ExceptionUtils.getStackTrace(e));
		return Type.SEM_CLASSIFICACAO.getType();
		
	} finally {
		if (Objects.nonNull(inputStrean)) {
			close(inputStrean);
		}
	}
	
}
 
开发者ID:sjcdigital,项目名称:temis-api,代码行数:28,代码来源:ClassifyLaw.java

示例6: run

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
@PostConstruct
@SuppressWarnings("deprecation")
public void run() {
	
	DoccatModel model = null;
	OutputStream modelOut = null;
	
	try {
		
		// Ensinando a máquina
		InputStreamFactory dataIn = new MarkableFileInputStreamFactory(Paths.get(train).toFile());
		ObjectStream<String> lineStream = new PlainTextByLineStream(dataIn, "UTF-8");
		ObjectStream<DocumentSample> sampleStream = new DocumentSampleStream(lineStream);
		model = DocumentCategorizerME.train("pt", sampleStream);
		
		// Escrevendo arquivo que ela aprendeu
		modelOut = new BufferedOutputStream(new FileOutputStream(Paths.get(bin).toFile()));
		model.serialize(modelOut);
		
	} catch (IOException e) {
		LOGGER.error(ExceptionUtils.getStackTrace(e));
	} finally {
		if (Objects.nonNull(modelOut)) {
			closeOutputStream(modelOut);
		}
	}
	
}
 
开发者ID:sjcdigital,项目名称:temis-api,代码行数:29,代码来源:Train.java

示例7: OpenNLPIntentMatcher

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
/**
 * Constructor. Sets up the matcher to use the specified model (via a URL) and specifies the minimum and maybe match
 * score.
 * 
 * @param intentModelUrl A URL pointing at the document categoriser model file to load.
 * @param minMatchScore The minimum match score for an intent match to be considered good.
 * @param maybeMatchScore The maybe match score. Use -1 to disable maybe matching.
 * @param tokenizer The tokenizer to use when tokenizing an utterance.
 * @param slotMatcher The slot matcher to use to extract slots from the utterance.
 */
public OpenNLPIntentMatcher(URL intentModelUrl, Tokenizer tokenizer, SlotMatcher slotMatcher, float minMatchScore, float maybeMatchScore)
{
  super(tokenizer, slotMatcher, minMatchScore, maybeMatchScore);

  try
  {
    model = new DoccatModel(intentModelUrl);
  }
  catch (Exception e)
  {
    throw new IllegalArgumentException("Unable to load intent model", e);
  }
}
 
开发者ID:rabidgremlin,项目名称:Mutters,代码行数:24,代码来源:OpenNLPIntentMatcher.java

示例8: testModelLoad

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
@Test
public void testModelLoad()
  throws Exception
{
  URL modelUrl = Thread.currentThread().getContextClassLoader()
      .getResource("models/en-cat-taxi-intents.bin");
  assertThat(modelUrl, is(notNullValue()));

  DoccatModel model = new DoccatModel(modelUrl);
  assertThat(model, is(notNullValue()));
}
 
开发者ID:rabidgremlin,项目名称:Mutters,代码行数:12,代码来源:TestCategorization.java

示例9: initialize

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
public void initialize(UimaContext aContext)
throws ResourceInitializationException {
super.initialize(aContext);

try {
    InputStream is = this.getClass().getResourceAsStream((String) aContext.getConfigParameterValue(MODEL_NAME_PARAM));
    DoccatModel m = new DoccatModel(is);
    categorizer = new DocumentCategorizerME(m);
}catch(IOException e){
    throw new ResourceInitializationException(e);
}
   }
 
开发者ID:IE4OpenData,项目名称:Octroy,代码行数:13,代码来源:ContractClassifier.java

示例10: train

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
public static void  train(String file_train, String file_model) throws IOException {
	DoccatModel model = null;
	ObjectStream<String> lineStream =
			new PlainTextByLineStream(new MarkableFileInputStreamFactory(
					new File(file_train)), "UTF-8");
	ObjectStream<DocumentSample> sampleStream =
			new DocumentSampleStream(lineStream);

	TrainingParameters param = TrainingParameters.defaultParams();
	DoccatFactory factory = new DoccatFactory();
	model = DocumentCategorizerME.train("en", sampleStream,param,factory);

	model.serialize(new FileOutputStream(file_model));
}
 
开发者ID:jackeylu,项目名称:NLP_with_Java_zh,代码行数:15,代码来源:SentenceTest.java

示例11: classify

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
public static void classify(String modelFile, String inputText) throws InvalidFormatException, IOException {
	InputStream modelIn = new FileInputStream(modelFile);
	DoccatModel model = new DoccatModel(modelIn);
	DocumentCategorizerME categorizer = new DocumentCategorizerME(model);
	
	double[] outcomes = categorizer.categorize(inputText);
	
	for (int i = 0; i < categorizer.getNumberOfCategories(); i++)
	{
		System.out.println(categorizer.getCategory(i) + " - " + outcomes[i]);
	}
	
	System.out.println(categorizer.getBestCategory(outcomes));
	System.out.println(categorizer.getAllResults(outcomes));
}
 
开发者ID:jackeylu,项目名称:NLP_with_Java_zh,代码行数:16,代码来源:SentenceTest.java

示例12: initModel

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
private void initModel() throws Exception {

		// Regex model
		regexClassifierHighScore = getRegexs("ini/regex_high_score.txt");
		regexClassifierMediumScore = getRegexs("ini/regex_medium_score.txt");
		regexClassifierLowScore = getRegexs("ini/regex_low_score.txt");

		// Open NLP classifier
		DoccatModel m = new DoccatModel(new File("model/open_comments.model"));
		openNLPClassifier = new DocumentCategorizerME(m);

		// Weka NaiveBayes classifier
		wekaNBClassifier = (Classifier) SerializationHelper.read(new FileInputStream("model/nb_comments.model"));

		// Weka SGD Classifier
		// wekaSGDClassifier = (Classifier) SerializationHelper.read(new
		// FileInputStream("model/sgd_comments.model"));

		// // Weka classifer J48
		//wekaJ48Classifier = (Classifier) SerializationHelper.read(new FileInputStream("model/j48_comments.model"));

		// // Weka SMO comments
		// wekaSMOClassifier = (Classifier) SerializationHelper.read(new
		// FileInputStream("model/smo_comments.model"));

		// This needs to be removed, only used to copy the structure when
		// classifing
		wekaARFF = getInstancesFromARFF("model/comments.arff");
		wekaARFF.setClassIndex(wekaARFF.numAttributes() - 1);

//		ObjectInputStream oin = new ObjectInputStream(new FileInputStream("model/StringToWordVector.filter"));
//		filter = (StringToWordVector) oin.readObject();
//		oin.close();
//		filter.setInputFormat(wekaARFF);
//
//		Instances trainFiltered = Filter.useFilter(wekaARFF, filter);
//		trainFiltered.setClassIndex(0);

		//System.out.println(filter);

	}
 
开发者ID:SOBotics,项目名称:SOCVFinder,代码行数:42,代码来源:CommentHeatCategory.java

示例13: testCategorization

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
@Test
public void testCategorization()
  throws Exception
{
  URL modelUrl = Thread.currentThread().getContextClassLoader()
      .getResource("models/en-cat-taxi-intents.bin");
  assertThat(modelUrl, is(notNullValue()));

  DoccatModel model = new DoccatModel(modelUrl);
  assertThat(model, is(notNullValue()));

  DocumentCategorizerME myCategorizer = new DocumentCategorizerME(model);
  // model was built with OpenNLP whitespace tokenizer
  OpenNLPTokenizer tokenizer = new OpenNLPTokenizer(WhitespaceTokenizer.INSTANCE);

  String category = myCategorizer.getBestCategory(myCategorizer.categorize(tokenizer.tokenize("Order me a taxi")));
  assertThat(category, is(notNullValue()));
  assertThat(category, is("OrderTaxi"));

  category = myCategorizer.getBestCategory(myCategorizer.categorize(tokenizer.tokenize("Send me a taxi")));
  assertThat(category, is(notNullValue()));
  assertThat(category, is("OrderTaxi"));

  category = myCategorizer
      .getBestCategory(myCategorizer.categorize(tokenizer.tokenize("Send a taxi to 12 Pleasent Street")));
  assertThat(category, is(notNullValue()));
  assertThat(category, is("OrderTaxi"));

  category = myCategorizer.getBestCategory(myCategorizer.categorize(tokenizer.tokenize("Cancel my cab")));
  assertThat(category, is(notNullValue()));
  assertThat(category, is("CancelTaxi"));

  category = myCategorizer.getBestCategory(myCategorizer.categorize(tokenizer.tokenize("Where is my taxi ?")));
  assertThat(category, is(notNullValue()));
  assertThat(category, is("WhereTaxi"));

  category = myCategorizer
      .getBestCategory(myCategorizer.categorize(tokenizer.tokenize("The address is 136 River Road")));
  assertThat(category, is(notNullValue()));
  assertThat(category, is("GaveAddress"));
}
 
开发者ID:rabidgremlin,项目名称:Mutters,代码行数:42,代码来源:TestCategorization.java

示例14: getInstance

import opennlp.tools.doccat.DoccatModel; //导入依赖的package包/类
public static LanguageIdentifier getInstance() throws InvalidFormatException, IOException {
    LanguageIdentifier li = new LanguageIdentifier();
    DoccatModel model = new DoccatModel(li.getClass().getResourceAsStream("/nakala/lang.model"));
    li.doccat = new DocumentCategorizerME(model);
    return li;
}
 
开发者ID:groupon,项目名称:nakala,代码行数:7,代码来源:LanguageIdentifier.java


注:本文中的opennlp.tools.doccat.DoccatModel类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。