本文整理汇总了Java中mulan.evaluation.measure.Measure类的典型用法代码示例。如果您正苦于以下问题:Java Measure类的具体用法?Java Measure怎么用?Java Measure使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
Measure类属于mulan.evaluation.measure包,在下文中一共展示了Measure类的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: toString
import mulan.evaluation.measure.Measure; //导入依赖的package包/类
/**
* Returns a string with the results of the evaluation
*
* @return a string with the results of the evaluation
*/
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
for (Measure m : getMeasures()) {
sb.append(m);
sb.append("\n");
}
return sb.toString();
}
示例2: getListMeasures
import mulan.evaluation.measure.Measure; //导入依赖的package包/类
/**
* Generate the set of measures to obtain as output from classifiers
*
* @param numLabels Number of labels in the dataset
* @return List of Measure objects
*/
private List<Measure> getListMeasures(int numLabels) {
// Set of measures to obtain from the classifier
List<Measure> measuresList = new ArrayList<Measure>(5);
measuresList.add(new HammingLoss());
measuresList.add(new ExampleBasedAccuracy(false));
measuresList.add(new ExampleBasedPrecision(false));
measuresList.add(new ExampleBasedRecall(false));
measuresList.add(new ExampleBasedFMeasure(false));
measuresList.add(new SubsetAccuracy());
measuresList.add(new MacroFMeasure(numLabels, false));
measuresList.add(new MacroPrecision(numLabels, false));
measuresList.add(new MacroRecall(numLabels, false));
measuresList.add(new MacroAUC(numLabels));
measuresList.add(new MicroFMeasure(numLabels));
measuresList.add(new MicroPrecision(numLabels));
measuresList.add(new MicroRecall(numLabels));
measuresList.add(new MicroAUC(numLabels));
measuresList.add(new OneError());
measuresList.add(new Coverage());
measuresList.add(new RankingLoss());
measuresList.add(new AveragePrecision());
return measuresList;
}
示例3: run
import mulan.evaluation.measure.Measure; //导入依赖的package包/类
/**
* Run the selected multi-label classification algorithm
*
* @param args Command line arguments
*/
private void run(String[] args) {
List<Measure> measures;
MultiLabelLearner classifier;
MultipleEvaluation results = new MultipleEvaluation();
long tIniTr = 0;
long tIniTe = 0;
long tTrain = 0;
long tTest = 0;
long tTotal = 0;
long taux = 0;
long taux2 = 0;
readParameters(args);
root = path + File.separator + dataset + "-";
try {
int numLabels = getNumberOfLabels();
measures = getListMeasures(numLabels);
classifier = getClassifier(numLabels);
for(int fold = 1; fold <= folds; fold++) {
if(debug) System.out.println("Fold " + fold);
MultiLabelInstances
train = new MultiLabelInstances(root + fold + "tra.arff", xmlfile),
test = new MultiLabelInstances(root + fold + "tst.arff", xmlfile);
MultiLabelLearner cls = classifier.makeCopy();
tIniTr = System.currentTimeMillis();
cls.build(train);
taux = System.currentTimeMillis();
tTrain = (taux-tIniTr)/1 + tTrain;
tIniTe = System.currentTimeMillis();
Evaluator evaluator = new Evaluator();
Evaluation evaluation;
evaluation = evaluator.evaluate(cls, test, measures);
taux2 = System.currentTimeMillis();
tTest = (taux2-tIniTe)/1 + tTest;
tTotal = (taux2-tIniTr)/1 + tTotal;
if (debug) System.out.println(evaluation);
results.addEvaluation(evaluation);
}
results.calculateStatistics();
System.out.println(algorithm + "," + dataset + "," + results.toCSV().replace(",", ".").replace(";", ",").replace("\u00B1", ";") + tTrain + "," + tTest + "," + tTotal+ ",");
} catch(Exception e) {
e.printStackTrace();
}
}
示例4: MulanEvaluation
import mulan.evaluation.measure.Measure; //导入依赖的package包/类
public MulanEvaluation(List<Measure> someMeasures, MultiLabelInstances data) throws Exception {
super(someMeasures, data);
}
示例5: main
import mulan.evaluation.measure.Measure; //导入依赖的package包/类
public static void main(String[] args) throws Exception{
// maybe llog, medical, enron
System.err.println("Running...");
MultiLabelInstances mli = new MultiLabelInstances(args[0] + ".arff", args[0] + ".xml");
for (int k = 2; k < mli.getNumLabels(); k++) {
for (double t = 0.1; t <= 1.0; t+=0.1) {
MLCBMaD classif = new MLCBMaD(new RandomForest());
classif.setK(k);
classif.setT(t);
Evaluator eval = new Evaluator();
ArrayList<Measure> mes = new ArrayList<Measure>();
mes.add(new ExampleBasedAccuracy());
MultipleEvaluation meval = eval.crossValidate(classif,
mli,
mes,
5);
meval.calculateStatistics();
double curperf = meval.getMean("Example-Based Accuracy");
System.out.println(k + " " + t+ " " + curperf);
}
}
}