当前位置: 首页>>代码示例>>Java>>正文


Java MatrixEntry类代码示例

本文整理汇总了Java中librec.data.MatrixEntry的典型用法代码示例。如果您正苦于以下问题:Java MatrixEntry类的具体用法?Java MatrixEntry怎么用?Java MatrixEntry使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


MatrixEntry类属于librec.data包,在下文中一共展示了MatrixEntry类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: writeMatrix

import librec.data.MatrixEntry; //导入依赖的package包/类
/**
 * write a matrix data into a file
 */
private void writeMatrix(SparseMatrix data, String filePath) throws Exception {
    // delete old file first
    FileIO.deleteFile(filePath);

    List<String> lines = new ArrayList<>(1500);
    for (MatrixEntry me : data) {
        int u = me.row();
        int j = me.column();
        double ruj = me.get();

        if (ruj <= 0)
            continue;

        String user = rateDao.getUserId(u);
        String item = rateDao.getItemId(j);
        String timestamp = timeMatrix != null ? " " + timeMatrix.get(u, j) : "";

        lines.add(user + " " + item + " " + (float) ruj + timestamp);

        if (lines.size() >= 1000) {
            FileIO.writeList(filePath, lines, true);
            lines.clear();
        }
    }

    if (lines.size() > 0)
        FileIO.writeList(filePath, lines, true);

    Logs.debug("Matrix data is written to: {}", filePath);
}
 
开发者ID:xiaojieliu7,项目名称:MicroServiceProject,代码行数:34,代码来源:LibRec.java

示例2: initModel

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
   public void initModel() throws Exception {
	super.initModel();
	
	userExp = new DenseVector(numUsers);
	for (MatrixEntry me : trainMatrix) {
		int u = me.row(); // user
		double ruj = me.get();
		
		userExp.add(u, Math.exp(ruj));
	}

}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:14,代码来源:LRMF.java

示例3: initModel

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
   public void initModel() throws Exception {

	PukSum = new DenseMatrix(numUsers, numFactors);
	PkiSum = new DenseMatrix(numFactors, numItems);

	// initialize count variables.
	Nuk = new DenseMatrix(numUsers, numFactors);
	Nu = new DenseVector(numUsers);

	Nki = new DenseMatrix(numFactors, numItems);
	Nk = new DenseVector(numFactors);

	alpha = new DenseVector(numFactors);
	alpha.setAll(initAlpha);

	beta = new DenseVector(numItems);
	beta.setAll(initBeta);

	// The z_u,i are initialized to values in [0, K-1] to determine the initial state of the Markov chain.
	z = HashBasedTable.create();
	for (MatrixEntry me : trainMatrix) {
		int u = me.row();
		int i = me.column();
		int t = (int) (Math.random() * numFactors); // 0 ~ k-1

		// assign a topic t to pair (u, i)
		z.put(u, i, t);

		// number of items of user u assigned to topic t.
		Nuk.add(u, t, 1);
		// total number of items of user u
		Nu.add(u, 1);
		// number of instances of item i assigned to topic t
		Nki.add(t, i, 1);
		// total number of words assigned to topic t.
		Nk.add(t, 1);
	}
}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:40,代码来源:LDA.java

示例4: isConverged

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
protected boolean isConverged(int iter) throws Exception {
	loss = 0;

	// get params
	estimateParams();

	// compute likelihood
	int count = 0;
	for (MatrixEntry me : trainMatrix) {
		int u = me.row();
		int i = me.column();
		double rui = me.get();
		int r = ratingScale.indexOf(rui);

		double prob = 0;
		for (int k = 0; k < numFactors; k++) {
			prob += Puk.get(u, k) * Pki.get(k, i) * Pkir[k][i][r];
		}

		loss += -Math.log(prob);
		count++;
	}
	loss /= count;

	float delta = (float) (loss - lastLoss); // loss gets smaller, delta <= 0

//	Logs.debug("{}{} iter {} achieves log likelihood = {}, delta_LogLLH = {}", algoName, foldInfo, iter,  (float) loss, delta);

	if (numStats > 1 && delta > 0) {
		//Logs.debug("{}{} has converged at iter {}", algoName, foldInfo, iter);
		return true;
	}

	lastLoss = loss;

	return false;
}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:39,代码来源:BUCM.java

示例5: isConverged

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
protected boolean isConverged(int iter) throws Exception {

	// get the parameters
	estimateParams();

	// compute the perplexity
	int N = 0;
	double sum = 0;
	for (MatrixEntry me : trainMatrix) {
		int u = me.row();
		int v = me.column();
		double ruv = me.get();

		sum += perplexity(u, v, ruv);
		N++;
	}

	double perp = Math.exp(sum / N);
	double delta = perp - loss; // perplexity should get smaller and smaller --> delta<0

	if (numStats > 1 && delta > 0)
		return true;

	loss = perp;
	return false;
}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:28,代码来源:LDCC.java

示例6: buildModel

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
   public void buildModel() throws Exception {
	for (int i = 1; i <= numIters; i++) {
		loss = 0;
		for (MatrixEntry me : trainMatrix) {
			int u = me.row();
			int j = me.column();
			double ruj = me.get();

			double pred = predict(u, j);
			double euj = ruj - pred;
			loss += euj * euj;

			double userWeight = userWeights.get(u) + lRate * (euj - regU * userWeights.get(u));
			userWeights.set(u, userWeight);

			// Gradient-Step on item weights.
			double itemWeight = itemWeights.get(j) + lRate * (euj - regI * itemWeights.get(j));
			itemWeights.set(j, itemWeight);
			
			loss += regU * userWeights.get(u) * userWeights.get(u) + regI * itemWeights.get(j) * itemWeights.get(j);

		}
		loss *= 0.5;

		if (isConverged(i))
			break;
	}
}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:30,代码来源:RfRec.java

示例7: initModel

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
   public void initModel() throws Exception {

	Nuk = new DenseMatrix(numUsers, K);
	Nu = new DenseVector(numUsers);

	Nkl = new DenseMatrix(K, L);
	Nk = new DenseVector(K);

	Nklr = new int[K][L][numLevels];
	Nkli = new int[K][L][numItems];

	Zk = HashBasedTable.create();
	Zl = HashBasedTable.create();

	for (MatrixEntry me : trainMatrix) {
		int u = me.row();
		int i = me.column();
		double rate = me.get();
		int r = ratingScale.indexOf(rate);

		int k = (int) (K * Math.random()); // user's topic k
		int l = (int) (L * Math.random()); // item's topic l

		Nuk.add(u, k, 1);
		Nu.add(u, 1);

		Nkl.add(k, l, 1);
		Nk.add(k, 1);

		Nklr[k][l][r]++;
		Nkli[k][l][i]++;

		Zk.put(u, i, k);
		Zl.put(u, i, l);
	}

	// parameters
	PukSum = new DenseMatrix(numUsers, K);
	PklSum = new DenseMatrix(K, L);
	PklrSum = new double[K][L][numLevels];
	Pklr = new double[K][L][numLevels];
	PkliSum = new double[K][L][numItems];
	Pkli = new double[K][L][numItems];
}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:46,代码来源:BHfree.java

示例8: eStep

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
protected void eStep() {

	for (MatrixEntry me : trainMatrix) {
		int u = me.row();
		int i = me.column();
		double rate = me.get();
		int r = ratingScale.indexOf(rate);

		int k = Zk.get(u, i);
		int l = Zl.get(u, i);

		Nuk.add(u, k, -1);
		Nu.add(u, -1);
		Nkl.add(k, l, -1);
		Nk.add(k, -1);
		Nklr[k][l][r]--;
		Nkli[k][l][i]--;

		DenseMatrix Pzw = new DenseMatrix(K, L);
		double sum = 0;
		for (int z = 0; z < K; z++) {
			for (int w = 0; w < L; w++) {
				double v1 = (Nuk.get(u, k) + initAlpha) / (Nu.get(u) + K * initAlpha);
				double v2 = (Nkl.get(k, l) + initBeta) / (Nk.get(k) + L * initBeta);
				double v3 = (Nklr[k][l][r] + initGamma) / (Nkl.get(k, l) + numLevels * initGamma);
				double v4 = (Nkli[k][l][i] + initSigma) / (Nkl.get(k, l) + numItems * initSigma);

				double val = v1 * v2 * v3 * v4;
				Pzw.set(z, w, val);
				sum += val;
			}
		}

		// normalization
		Pzw = Pzw.scale(1.0 / sum);

		// resample k
		double[] Pz = new double[K];
		for (int z = 0; z < K; z++)
			Pz[z] = Pzw.sumOfRow(z);
		for (int z = 1; z < K; z++)
			Pz[z] += Pz[z - 1];
		double rand = Math.random();
		for (k = 0; k < K; k++) {
			if (rand < Pz[k])
				break;
		}

		// resample l
		double[] Pw = new double[L];
		for (int w = 0; w < L; w++)
			Pw[w] = Pzw.sumOfColumn(w);
		for (int w = 1; w < L; w++)
			Pw[w] += Pw[w - 1];

		rand = Math.random();
		for (l = 0; l < L; l++) {
			if (rand < Pw[l])
				break;
		}

		// add statistic
		Nuk.add(u, k, 1);
		Nu.add(u, 1);
		Nkl.add(k, l, 1);
		Nk.add(k, 1);
		Nklr[k][l][r]++;
		Nkli[k][l][i]++;

		Zk.put(u, i, k);
		Zl.put(u, i, l);
	}
}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:75,代码来源:BHfree.java

示例9: buildModel

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
   public void buildModel() throws Exception {

	for (int iter = 1; iter <= numIters; iter++) {

		loss = 0;
		for (MatrixEntry me : trainMatrix) {

			int u = me.row(); // user
			int j = me.column(); // item
			double ruj = me.get();

			double pred = DenseMatrix.rowMult(P, u, Q, j);
			double uexp = 0;

			List<Integer> items = trainMatrix.getColumns(u);
			for (int i : items) {
				uexp += Math.exp(DenseMatrix.rowMult(P, u, Q, i));
			}

			loss -= Math.exp(ruj) / userExp.get(u) * Math.log(Math.exp(pred) / uexp);

			// update factors
			for (int f = 0; f < numFactors; f++) {
				double puf = P.get(u, f);
				double qjf = Q.get(j, f);
				double delta_u = (Math.exp(ruj) / userExp.get(u) - Math.exp(pred) / uexp) * gd(pred) * qjf - regU * puf;
				double delta_j = (Math.exp(ruj) / userExp.get(u) - Math.exp(pred) / uexp) * gd(pred) * puf - regI * qjf;

				P.add(u, f, lRate * delta_u);
				Q.add(j, f, lRate * delta_j);

				loss += 0.5 * regU * puf * puf + 0.5 * regI * qjf * qjf;
			}

		}

		if (isConverged(iter))
			break;

	}// end of training
}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:43,代码来源:LRMF.java

示例10: eStep

import librec.data.MatrixEntry; //导入依赖的package包/类
protected void eStep() {

		double sumAlpha = alpha.sum();
		double sumBeta = beta.sum();

		// Gibbs sampling from full conditional distribution
		for (MatrixEntry me : trainMatrix) {
			int u = me.row();
			int i = me.column();
			int t = z.get(u, i); // topic

			Nuk.add(u, t, -1);
			Nu.add(u, -1);
			Nki.add(t, i, -1);
			Nk.add(t, -1);

			// do multinomial sampling via cumulative method:
			double[] p = new double[numFactors];
			for (int k = 0; k < numFactors; k++) {
				p[k] = (Nuk.get(u, k) + alpha.get(k)) / (Nu.get(u) + sumAlpha) * (Nki.get(k, i) + beta.get(i))
						/ (Nk.get(k) + sumBeta);
			}
			// cumulating multinomial parameters
			for (int k = 1; k < p.length; k++) {
				p[k] += p[k - 1];
			}
			// scaled sample because of unnormalized p[], randomly sampled a new topic t
			double rand = Math.random() * p[numFactors - 1];
			for (t = 0; t < p.length; t++) {
				if (rand < p[t])
					break;
			}

			// add newly estimated z_i to count variables
			Nuk.add(u, t, 1);
			Nu.add(u, 1);
			Nki.add(t, i, 1);
			Nk.add(t, 1);

			z.put(u, i, t);
		}

	}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:44,代码来源:LDA.java

示例11: initModel

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
   public void initModel() throws Exception {

	// cumulative parameters
	PukSum = new DenseMatrix(numUsers, numFactors);
	PkiSum = new DenseMatrix(numFactors, numItems);
	PkirSum = new double[numFactors][numItems][numLevels];

	// initialize count variables
	Nuk = new DenseMatrix(numUsers, numFactors);
	Nu = new DenseVector(numUsers);

	Nki = new DenseMatrix(numFactors, numItems);
	Nk = new DenseVector(numFactors);

	Nkir = new int[numFactors][numItems][numLevels];

	alpha = new DenseVector(numFactors);
	alpha.setAll(initAlpha);

	beta = new DenseVector(numItems);
	beta.setAll(initBeta);

	gamma = new DenseVector(numLevels);
//	initGamma = algoOptions.getFloat("-gamma", 1.0f / numLevels);
	gamma.setAll(initGamma);

	// initialize topics
	z = HashBasedTable.create();
	for (MatrixEntry me : trainMatrix) {

		int u = me.row();
		int i = me.column();
		double rui = me.get();

		int r = ratingScale.indexOf(rui); // rating level 0 ~ numLevels
		int t = (int) (Math.random() * numFactors); // 0 ~ k-1

		// assign a topic t to pair (u, i)
		z.put(u, i, t);
		// for users
		Nuk.add(u, t, 1);
		Nu.add(u, 1);
		// for items
		Nki.add(t, i, 1);
		Nk.add(t, 1);
		// for ratings
		Nkir[t][i][r]++;
	}
}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:51,代码来源:BUCM.java

示例12: eStep

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
protected void eStep() {

	double sumAlpha = alpha.sum();
	double sumBeta = beta.sum();
	double sumGamma = gamma.sum();

	// collapse Gibbs sampling
	for (MatrixEntry me : trainMatrix) {
		int u = me.row();
		int i = me.column();
		double rui = me.get();

		int r = ratingScale.indexOf(rui); // rating level 0 ~ numLevels
		int t = z.get(u, i);

		Nuk.add(u, t, -1);
		Nu.add(u, -1);
		Nki.add(t, i, -1);
		Nk.add(t, -1);
		Nkir[t][i][r]--;

		// do multinomial sampling via cumulative method:
		double[] p = new double[numFactors];
		double v1, v2, v3;
		for (int k = 0; k < numFactors; k++) {

			v1 = (Nuk.get(u, k) + alpha.get(k)) / (Nu.get(u) + sumAlpha);
			v2 = (Nki.get(k, i) + beta.get(i)) / (Nk.get(k) + sumBeta);
			v3 = (Nkir[k][i][r] + gamma.get(r)) / (Nki.get(k, i) + sumGamma);

			p[k] = v1 * v2 * v3;
		}
		// cumulate multinomial parameters
		for (int k = 1; k < p.length; k++) {
			p[k] += p[k - 1];
		}
		// scaled sample because of unnormalized p[], randomly sampled a new topic t
		double rand = Math.random() * p[numFactors - 1];
		for (t = 0; t < p.length; t++) {
			if (rand < p[t])
				break;
		}

		// new topic t
		z.put(u, i, t);

		// add newly estimated z_i to count variables
		Nuk.add(u, t, 1);
		Nu.add(u, 1);
		Nki.add(t, i, 1);
		Nk.add(t, 1);
		Nkir[t][i][r]++;
	}
}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:56,代码来源:BUCM.java

示例13: buildModel

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
   public void buildModel() throws Exception {
	for (int iter = 1; iter <= numIters; iter++) {

		loss = 0;

		// temp data
		DenseMatrix PS = new DenseMatrix(numUsers, numFactors);
		DenseMatrix QS = new DenseMatrix(numItems, numFactors);

		// ratings
		for (MatrixEntry me : trainMatrix) {
			int u = me.row();
			int j = me.column();
			double ruj = me.get();

			double pred = predict(u, j);
			double euj = pred - ruj;

			loss += euj * euj;

			for (int f = 0; f < numFactors; f++) {
				double puf = P.get(u, f);
				double qjf = Q.get(j, f);

				PS.add(u, f, euj * qjf + regU * puf);
				QS.add(j, f, euj * puf + regI * qjf);

				loss += regU * puf * puf + regI * qjf * qjf;
			}
		}

		// friends
		for (int u = 0; u < numUsers; u++) {
			// out links: F+
			SparseVector uos = socialMatrix.row(u);

			for (int k : uos.getIndex()) {
				double suk = similarity(u, k);
				if (!Double.isNaN(suk)) {
					for (int f = 0; f < numFactors; f++) {
						double euk = P.get(u, f) - P.get(k, f);
						PS.add(u, f, beta * suk * euk);

						loss += beta * suk * euk * euk;
					}
				}
			}

			// in links: F-
			SparseVector uis = socialMatrix.column(u);
			for (int g : uis.getIndex()) {
				double sug = similarity(u, g);
				if (!Double.isNaN(sug)) {
					for (int f = 0; f < numFactors; f++) {
						double eug = P.get(u, f) - P.get(g, f);
						PS.add(u, f, beta * sug * eug);
					}
				}
			}

		} // end of for loop

		P = P.add(PS.scale(-lRate));
		Q = Q.add(QS.scale(-lRate));

		loss *= 0.5;

		if (isConverged(iter))
			break;
	}
}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:73,代码来源:SoReg.java

示例14: initModel

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
   public void initModel() throws Exception {

	// cumulative parameters
	PukSum = new DenseMatrix(numUsers, numFactors);
	PkirSum = new double[numFactors][numItems][numLevels];

	// initialize count variables
	Nuk = new DenseMatrix(numUsers, numFactors);
	Nu = new DenseVector(numUsers);

	Nkir = new int[numFactors][numItems][numLevels];
	Nki = new DenseMatrix(numFactors, numItems);

	alpha = new DenseVector(numFactors);
	alpha.setAll(initAlpha);

	beta = new DenseVector(numLevels);
	beta.setAll(initBeta);

	// initialize topics
	z = HashBasedTable.create();
	for (MatrixEntry me : trainMatrix) {

		int u = me.row();
		int i = me.column();
		double rui = me.get();

		int r = ratingScale.indexOf(rui); // rating level 0 ~ numLevels
		int t = (int) (Math.random() * numFactors); // 0 ~ k-1

		// assign a topic t to pair (u, i)
		z.put(u, i, t);
		// number of pairs (u, t) in (u, i, t)
		Nuk.add(u, t, 1);
		// total number of items of user u
		Nu.add(u, 1);

		// number of pairs (t, i, r)
		Nkir[t][i][r]++;
		// total number of words assigned to topic t
		Nki.add(t, i, 1);
	}

}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:46,代码来源:URP.java

示例15: eStep

import librec.data.MatrixEntry; //导入依赖的package包/类
@Override
protected void eStep() {

	double sumAlpha = alpha.sum();
	double sumBeta = beta.sum();

	// collapse Gibbs sampling
	for (MatrixEntry me : trainMatrix) {
		int u = me.row();
		int i = me.column();
		double rui = me.get();

		int r = (int) (rui / minRate - 1); // rating level 0 ~ numLevels
		int t = z.get(u, i);

		Nuk.add(u, t, -1);
		Nu.add(u, -1);
		Nkir[t][i][r]--;
		Nki.add(t, i, -1);

		// do multinomial sampling via cumulative method:
		double[] p = new double[numFactors];
		for (int k = 0; k < numFactors; k++) {
			p[k] = (Nuk.get(u, k) + alpha.get(k)) / (Nu.get(u) + sumAlpha) * (Nkir[k][i][r] + beta.get(r))
					/ (Nki.get(k, i) + sumBeta);
		}
		// cumulate multinomial parameters
		for (int k = 1; k < p.length; k++) {
			p[k] += p[k - 1];
		}
		// scaled sample because of unnormalized p[], randomly sampled a new topic t
		double rand = Math.random() * p[numFactors - 1];
		for (t = 0; t < p.length; t++) {
			if (rand < p[t])
				break;
		}

		// new topic t
		z.put(u, i, t);

		// add newly estimated z_i to count variables
		Nuk.add(u, t, 1);
		Nu.add(u, 1);
		Nkir[t][i][r]++;
		Nki.add(t, i, 1);
	}
}
 
开发者ID:mys3lf,项目名称:recalot.com,代码行数:48,代码来源:URP.java


注:本文中的librec.data.MatrixEntry类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。