本文整理汇总了Java中gnu.trove.map.hash.TIntFloatHashMap类的典型用法代码示例。如果您正苦于以下问题:Java TIntFloatHashMap类的具体用法?Java TIntFloatHashMap怎么用?Java TIntFloatHashMap使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
TIntFloatHashMap类属于gnu.trove.map.hash包,在下文中一共展示了TIntFloatHashMap类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: computeItemSim
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
private void computeItemSim() {
List<Integer> sortedItems = new ArrayList<Integer>();
sortedItems.addAll(items);
Collections.sort(sortedItems);
int id1, id2;
for (int i = 0; i < sortedItems.size() - 1; i++) {
id1 = sortedItems.get(i);
this.itemSim.put(id1, new TIntFloatHashMap());
for (int j = i + 1; j < sortedItems.size(); j++) {
id2 = sortedItems.get(j);
float val = 0;
if (map_item_intFeatures.containsKey(id1)
& map_item_intFeatures.containsKey(id2))
val = cmpJaccardSim(this.map_item_intFeatures.get(id1)
.keySet(), this.map_item_intFeatures.get(id2)
.keySet());
if (val > MIN_SIM) {
itemSim.get(id1).put(id2, val);
}
}
}
}
示例2: normalizeVector
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
/**
* Normalize a vector to unit length.
* @param X
* @return
*/
public static TIntFloatMap normalizeVector(TIntFloatMap X) {
TIntFloatHashMap Y = new TIntFloatHashMap();
double sumSquares = 0.0;
for (double x : X.values()) {
sumSquares += x * x;
}
if (sumSquares != 0.0) {
double norm = Math.sqrt(sumSquares);
for (int id : X.keys()) {
Y.put(id, (float) (X.get(id) / norm));
}
return Y;
}
return X;
}
示例3: HoughCircles
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
/**
* Construct with the given parameters.
*
* @param minRad
* minimum search radius
* @param maxRad
* maximum search radius
* @param radIncrement
* amount to increment search radius by between min and max.
* @param nDegree
* number of degree increments
*/
public HoughCircles(int minRad, int maxRad, int radIncrement, int nDegree) {
super();
this.minRad = minRad;
if (this.minRad <= 0)
this.minRad = 1;
this.maxRad = maxRad;
this.radmap = new TIntObjectHashMap<TIntObjectHashMap<TIntFloatHashMap>>();
this.radIncr = radIncrement;
this.nRadius = (maxRad - minRad) / this.radIncr;
this.nDegree = nDegree;
this.cosanglemap = new float[nRadius][nDegree];
this.sinanglemap = new float[nRadius][nDegree];
for (int radIndex = 0; radIndex < this.nRadius; radIndex++) {
for (int angIndex = 0; angIndex < nDegree; angIndex++) {
final double ang = angIndex * (2 * PI / nDegree);
final double rad = minRad + (radIndex * this.radIncr);
this.cosanglemap[radIndex][angIndex] = (float) (rad * cos(ang));
this.sinanglemap[radIndex][angIndex] = (float) (rad * sin(ang));
}
}
}
示例4: distanceEuclidean
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
private float distanceEuclidean(int n, HashSparseVector sv, float baseDistance) {
HashSparseVector center = classCenter.get(n);
int count = classCount.get(n);
float dist = baseDistance / (count * count);
TIntFloatHashMap data = center.data;
TIntFloatIterator it = sv.data.iterator();
while (it.hasNext()) {
it.advance();
int key = it.key();
if (!data.containsKey(key)) {
dist += it.value() * it.value();
}
else {
float temp = data.get(key) / count;
dist -= temp * temp;
dist += (it.value() - temp) * (it.value() - temp);
}
}
return dist;
}
示例5: updateBaseDist
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
private void updateBaseDist(int classid, HashSparseVector vector) {
float base = baseDistList.get(classid);
TIntFloatHashMap center = classCenter.get(classid).data;
TIntFloatIterator it = vector.data.iterator();
while (it.hasNext()) {
it.advance();
if (!center.containsKey(it.key())) {
base += it.value() * it.value();
}
else {
float temp = center.get(it.key());
base -= temp * temp;
base += (it.value() - temp) * (it.value() - temp);
}
}
baseDistList.set(classid, base);
}
示例6: getweight
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
private float getweight(int c1, int c2) {
int max,min;
if(c1<=c2){
max = c2;
min = c1;
}else{
max = c1;
min = c2;
}
float w;
TIntFloatHashMap map2 = wcc.get(min);
if(map2==null){
w = 0;
}else
w = map2.get(max);
return w;
}
示例7: getTop
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
/**
* 得到总能量值大于thres的元素对应的下标
*
* @param data 稀疏向量
* @param thres
* @return 元素下标 int[][] 第一列表示大于阈值的元素 第二列表示小于阈值的元素
*/
public static int[][] getTop(TIntFloatHashMap data, float thres) {
int[] idx = sort(data);
int i;
float total = 0;
float[] cp = new float[idx.length];
for (i = idx.length; i-- > 0;) {
cp[i] = (float) Math.pow(data.get(idx[i]), 2);
total += cp[i];
}
float ratio = 0;
for (i = 0; i < idx.length; i++) {
ratio += cp[i] / total;
if (ratio > thres)
break;
}
int[][] a = new int[2][];
a[0] = Arrays.copyOfRange(idx, 0, i);
a[1] = Arrays.copyOfRange(idx, i, idx.length);
return a;
}
示例8: sort
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
/**
* 由大到小排序
* @param tmap
* @return 数组下标
*/
public static int[] sort(TIntFloatHashMap tmap) {
HashMap<Integer, Float> map = new HashMap<Integer, Float>();
TIntFloatIterator it = tmap.iterator();
while (it.hasNext()) {
it.advance();
int id = it.key();
float val = it.value();
map.put(id, Math.abs(val));
}
it = null;
List<Entry> list = sort(map);
int[] idx = new int[list.size()];
Iterator<Entry> it1 = list.iterator();
int i=0;
while (it1.hasNext()) {
Entry entry = it1.next();
idx[i++] = (Integer) entry.getKey();
}
return idx;
}
示例9: normalizeVector
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
/**
* Normalizes the probability values in a vector so that to sum to 1.0
* @param vector
* @return
*/
public static TIntFloatMap normalizeVector(TIntFloatMap vector)
{
float total = 0;
TFloatIterator iter = vector.valueCollection().iterator();
while (iter.hasNext())
total += iter.next();
TIntFloatMap normalized = new TIntFloatHashMap(vector.size());
TIntFloatIterator iter2 = vector.iterator();
while (iter2.hasNext())
{
iter2.advance();
normalized.put(iter2.key(), iter2.value() / total);
}
return normalized;
}
示例10: testGetSortedIndices
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
@Test
public void testGetSortedIndices()
{
TIntFloatMap m = new TIntFloatHashMap();
m.put(0, 1f);
m.put(1, 10f);
m.put(2, 5f);
m.put(3, 2f);
int[] sorted = SemSigUtils.getSortedIndices(m);
assertEquals(4, sorted.length);
assertEquals(1, sorted[0]);
assertEquals(2, sorted[1]);
assertEquals(3, sorted[2]);
assertEquals(0, sorted[3]);
}
示例11: statisticProb
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
/**
* 一次性统计概率,节约时间
*/
private void statisticProb() {
System.out.println("统计概率");
float totalword = alpahbet.size();
TIntFloatIterator it = wordProb.iterator();
while(it.hasNext()){
it.advance();
float v = it.value()/totalword;
it.setValue(v);
Cluster cluster = new Cluster(it.key(),v,alpahbet.lookupString(it.key()));
clusters.put(it.key(), cluster);
}
TIntObjectIterator<TIntFloatHashMap> it1 = pcc.iterator();
while(it1.hasNext()){
it1.advance();
TIntFloatHashMap map = it1.value();
TIntFloatIterator it2 = map.iterator();
while(it2.hasNext()){
it2.advance();
it2.setValue(it2.value()/totalword);
}
}
}
示例12: sort
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
/**
* 由大到小排序
* @param map
* @return 数组下标
*/
public static int[] sort(TIntFloatHashMap tmap) {
HashMap<Integer, Float> map = new HashMap<Integer, Float>();
TIntFloatIterator it = tmap.iterator();
while (it.hasNext()) {
it.advance();
int id = it.key();
float val = it.value();
map.put(id, Math.abs(val));
}
it = null;
List<Entry> list = sort(map);
int[] idx = new int[list.size()];
Iterator<Entry> it1 = list.iterator();
int i=0;
while (it1.hasNext()) {
Entry entry = it1.next();
idx[i++] = (Integer) entry.getKey();
}
return idx;
}
示例13: HoughCircles
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
/**
* Construct with the given parameters.
*
* @param minRad minimum search radius
* @param maxRad maximum search radius
*/
public HoughCircles(int minRad, int maxRad, int radIncrement, int nDegree) {
super();
this.minRad = minRad;
if(this.minRad <= 0) this.minRad = 1;
this.maxRad = maxRad;
this.radmap = new TIntObjectHashMap<TIntObjectHashMap<TIntFloatHashMap>>();
this.radIncr = radIncrement;
this.nRadius = (maxRad-minRad) / this.radIncr;
this.nDegree = nDegree;
this.cosanglemap = new float[nRadius][nDegree];
this.sinanglemap = new float[nRadius][nDegree];
for (int radIndex=0; radIndex<this.nRadius; radIndex++) {
for (int angIndex=0; angIndex<nDegree; angIndex++) {
double ang = angIndex * (2 * PI / nDegree);
double rad = minRad + (radIndex * this.radIncr);
this.cosanglemap [radIndex][angIndex] = (float) (rad*cos(ang));
this.sinanglemap [radIndex][angIndex] = (float) (rad*sin(ang));
}
}
}
示例14: writeData
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
private void writeData(String filename) {
try {
BufferedWriter writer = new BufferedWriter(new FileWriter(filename));
TIntFloatHashMap m;
StringBuffer buf;
for (int id : items) {
buf = new StringBuffer();
buf.append(id + "\t");
m = map_item_intFeatures.get(id);
int[] fIDs = m.keys();
Arrays.sort(fIDs);
for (int i = 0; i < fIDs.length; i++) {
buf.append(fIDs[i] + ":" + m.get(fIDs[i]) + " ");
}
writer.append(buf);
writer.newLine();
}
writer.flush();
writer.close();
} catch (IOException ex) {
System.out.println(ex.getMessage());
}
}
示例15: UserModelRecommenderWorker
import gnu.trove.map.hash.TIntFloatHashMap; //导入依赖的package包/类
public UserModelRecommenderWorker(int u, BufferedWriter bw,
TIntObjectHashMap<TIntFloatHashMap> map_item_intFeatures,
Evaluator trainEval, Evaluator validEval, boolean silent, int topN,
int num_features, List<Double> listC, List<Double> listEps,
List<Integer> listSolverType, Map<Integer, Float> userTrainRatings,
Map<Integer, Float> userValRatings, boolean implicit,
int nValidNegEx, boolean addNegValidationEx, int timesRealFb, int minTrainEx,
HashSet<Integer> items, float relUnknownItems, int topK, String metric) {
this.topK = topK;
this.metric = metric;
this.u = u;
this.bw = bw;
this.map_item_intFeatures = map_item_intFeatures;
this.trainEval = trainEval;
this.validEval = validEval;
this.silent = silent;
this.topN = topN;
this.num_features = num_features;
this.listC = listC;
this.listEps = listEps;
this.listSolverType = listSolverType;
this.userTrainRatings = userTrainRatings;
this.userValRatings = userValRatings;
this.implicit = implicit;
this.relUnknownItems = relUnknownItems;
this.nValidNegEx = nValidNegEx;
this.timesRealFb = timesRealFb;
this.minTrainEx = minTrainEx;
this.items = items;
this.addNegValidationEx = addNegValidationEx;
originalTrainItems = new HashSet<Integer>();
}