本文整理汇总了Java中edu.stanford.nlp.sequences.FeatureFactory类的典型用法代码示例。如果您正苦于以下问题:Java FeatureFactory类的具体用法?Java FeatureFactory怎么用?Java FeatureFactory使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
FeatureFactory类属于edu.stanford.nlp.sequences包,在下文中一共展示了FeatureFactory类的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: loadClassifier
import edu.stanford.nlp.sequences.FeatureFactory; //导入依赖的package包/类
/** Load a classifier from the given Stream.
* <i>Implementation note: </i> This method <i>does not</i> close the
* Stream that it reads from.
*
* @param ois The ObjectInputStream to load the serialized classifier from
*
* @throws IOException If there are problems accessing the input stream
* @throws ClassCastException If there are problems interpreting the serialized data
* @throws ClassNotFoundException If there are problems interpreting the serialized data
* */
@SuppressWarnings("unchecked")
@Override
public void loadClassifier(ObjectInputStream ois, Properties props) throws ClassCastException, IOException, ClassNotFoundException {
classifier = (LinearClassifier<String, String>) ois.readObject();
flags = (SeqClassifierFlags) ois.readObject();
featureFactory = (FeatureFactory) ois.readObject();
if (props != null) {
flags.setProperties(props);
}
reinit();
classIndex = (Index<String>) ois.readObject();
answerArrays = (Set<List<String>>) ois.readObject();
knownLCWords = (Set<String>) ois.readObject();
}
示例2: makeDatum
import edu.stanford.nlp.sequences.FeatureFactory; //导入依赖的package包/类
@Override
public CRFDatum<List<String>, CRFLabel> makeDatum(List<IN> info, int loc, FeatureFactory<IN> featureFactory) {
pad.set(CoreAnnotations.AnswerAnnotation.class, flags.backgroundSymbol);
PaddedList<IN> pInfo = new PaddedList<IN>(info, pad);
List<List<String>> features = new ArrayList<List<String>>();
Collection<Clique> done = Generics.newHashSet();
for (int i = 0; i < windowSize; i++) {
List<String> featuresC = new ArrayList<String>();
List<Clique> windowCliques = featureFactory.getCliques(i, 0);
windowCliques.removeAll(done);
done.addAll(windowCliques);
for (Clique c : windowCliques) {
featuresC.addAll(featureFactory.getCliqueFeatures(pInfo, loc, c));
if(testTime && i==0)
// this feature is only present at test time and only appears
// in cliques of size 1 (i.e., cliques with window=0)
featuresC.add(BIAS);
}
features.add(featuresC);
}
int[] labels = new int[windowSize];
for (int i = 0; i < windowSize; i++) {
String answer = pInfo.get(loc + i - windowSize + 1).get(CoreAnnotations.AnswerAnnotation.class);
labels[i] = classIndex.indexOf(answer);
}
return new CRFDatum<List<String>, CRFLabel>(features, new CRFLabel(labels), null);
}
示例3: addOtherClasses
import edu.stanford.nlp.sequences.FeatureFactory; //导入依赖的package包/类
/** This adds to the feature name the name of classes that are other than
* the current class that are involved in the clique. In the CMM, these
* other classes become part of the conditioning feature, and only the
* class of the current position is being predicted.
*
* @return A collection of features with extra class information put
* into the feature name.
*/
private static Collection<String> addOtherClasses(Collection<String> feats, List<? extends CoreLabel> info,
int loc, Clique c) {
String addend = null;
String pAnswer = info.get(loc - 1).get(CoreAnnotations.AnswerAnnotation.class);
String p2Answer = info.get(loc - 2).get(CoreAnnotations.AnswerAnnotation.class);
String p3Answer = info.get(loc - 3).get(CoreAnnotations.AnswerAnnotation.class);
String p4Answer = info.get(loc - 4).get(CoreAnnotations.AnswerAnnotation.class);
String p5Answer = info.get(loc - 5).get(CoreAnnotations.AnswerAnnotation.class);
String nAnswer = info.get(loc + 1).get(CoreAnnotations.AnswerAnnotation.class);
// cdm 2009: Is this really right? Do we not need to differentiate names that would collide???
if (c == FeatureFactory.cliqueCpC) {
addend = '|' + pAnswer;
} else if (c == FeatureFactory.cliqueCp2C) {
addend = '|' + p2Answer;
} else if (c == FeatureFactory.cliqueCp3C) {
addend = '|' + p3Answer;
} else if (c == FeatureFactory.cliqueCp4C) {
addend = '|' + p4Answer;
} else if (c == FeatureFactory.cliqueCp5C) {
addend = '|' + p5Answer;
} else if (c == FeatureFactory.cliqueCpCp2C) {
addend = '|' + pAnswer + '-' + p2Answer;
} else if (c == FeatureFactory.cliqueCpCp2Cp3C) {
addend = '|' + pAnswer + '-' + p2Answer + '-' + p3Answer;
} else if (c == FeatureFactory.cliqueCpCp2Cp3Cp4C) {
addend = '|' + pAnswer + '-' + p2Answer + '-' + p3Answer + '-' + p4Answer;
} else if (c == FeatureFactory.cliqueCpCp2Cp3Cp4Cp5C) {
addend = '|' + pAnswer + '-' + p2Answer + '-' + p3Answer + '-' + p4Answer + '-' + p5Answer;
} else if (c == FeatureFactory.cliqueCnC) {
addend = '|' + nAnswer;
} else if (c == FeatureFactory.cliqueCpCnC) {
addend = '|' + pAnswer + '-' + nAnswer;
}
if (addend == null) {
return feats;
}
Collection<String> newFeats = Generics.newHashSet();
for (String feat : feats) {
String newFeat = feat + addend;
newFeats.add(newFeat);
}
return newFeats;
}