本文整理汇总了Java中dr.math.distributions.Distribution类的典型用法代码示例。如果您正苦于以下问题:Java Distribution类的具体用法?Java Distribution怎么用?Java Distribution使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
Distribution类属于dr.math.distributions包,在下文中一共展示了Distribution类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: getPriorExpectationMean
import dr.math.distributions.Distribution; //导入依赖的package包/类
public double getPriorExpectationMean() {
double expMean = 1.0;
Distribution dist = priorType.getDistributionInstance(this);
if (dist != null) {
expMean = dist.mean();
if (expMean == 0) {
expMean = dist.quantile(0.975);
}
if (expMean == 0) {
expMean = 1.0;
}
}
return expMean;
}
示例2: TwoPieceLocationScaleDistributionModel
import dr.math.distributions.Distribution; //导入依赖的package包/类
public TwoPieceLocationScaleDistributionModel(Parameter locationParam, Distribution distribution,
Parameter sigmaParameter,
Parameter gammaParameter, Parameterization parameterization) {
super(TwoPieceLocationScaleDistributionModelParser.DISTRIBUTION_MODEL);
this.locationParameter = locationParam;
this.sigmaParameter = sigmaParameter;
this.gammaParameter = gammaParameter;
this.distribution = distribution;
addVariable(locationParam);
addVariable(sigmaParameter);
addVariable(gammaParameter);
locationParam.addBounds(new Parameter.DefaultBounds(Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, 1));
sigmaParameter.addBounds(new Parameter.DefaultBounds(Double.POSITIVE_INFINITY, 0.0, 1));
gammaParameter.addBounds(new Parameter.DefaultBounds(Double.POSITIVE_INFINITY, 0.0, 1));
this.parameterization = parameterization;
// TODO Upgrade Distribution to DistributionModel
}
示例3: NormalNormalMeanGibbsOperator
import dr.math.distributions.Distribution; //导入依赖的package包/类
public NormalNormalMeanGibbsOperator(DistributionLikelihood inLikelihood, Distribution prior,
double weight) {
if (!(prior instanceof NormalDistribution || prior instanceof NormalDistributionModel))
throw new RuntimeException("Mean prior must be Normal");
this.likelihood = inLikelihood.getDistribution();
this.dataList = inLikelihood.getDataList();
if (likelihood instanceof NormalDistributionModel)
this.meanParameter = (Parameter) ((NormalDistributionModel) likelihood).getMean();
else if (likelihood instanceof LogNormalDistributionModel) {
if (((LogNormalDistributionModel) likelihood).getParameterization() == LogNormalDistributionModel.Parameterization.MEAN_STDEV) {
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMeanParameter();
} else {
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMuParameter();
}
isLog = true;
} else
throw new RuntimeException("Likelihood must be Normal or log Normal");
this.prior = prior;
setWeight(weight);
}
示例4: parseXMLObject
import dr.math.distributions.Distribution; //导入依赖的package包/类
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
DistributionLikelihood priorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PRIOR);
DistributionLikelihood pseudoPriorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PSEUDO_PRIOR);
Distribution prior = priorLikelihood.getDistribution();
Distribution pseudoPrior = pseudoPriorLikelihood.getDistribution();
Parameter modelIndicator = (Parameter)xo.getElementFirstChild(MODEL_INDICATOR);
int[] models = xo.getIntegerArrayAttribute(MODELS);
Parameter selectedVariable = (Parameter)xo.getElementFirstChild(SELECTED_VARIABLE);
ModelSpecificPseudoPriorLikelihood likelihood =
new ModelSpecificPseudoPriorLikelihood(
prior,
pseudoPrior,
modelIndicator,
models
);
likelihood.addData(selectedVariable);
return likelihood;
}
示例5: parseXMLObject
import dr.math.distributions.Distribution; //导入依赖的package包/类
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
DistributionLikelihood priorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PRIOR);
DistributionLikelihood pseudoPriorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PSEUDO_PRIOR);
Distribution prior = priorLikelihood.getDistribution();
Distribution pseudoPrior = pseudoPriorLikelihood.getDistribution();
Parameter bitVector = (Parameter)xo.getElementFirstChild(PARAMETER_VECTOR);
int paramIndex = xo.getIntegerAttribute(PARAMETER_INDEX);
Parameter selectedVariable = (Parameter)xo.getElementFirstChild(SELECTED_VARIABLE);
TwoPartsDistributionLikelihood likelihood =
new TwoPartsDistributionLikelihood(
prior,
pseudoPrior,
bitVector,
paramIndex
);
likelihood.addData(selectedVariable);
return likelihood;
}
示例6: setupChart
import dr.math.distributions.Distribution; //导入依赖的package包/类
private void setupChart() {
for (int i = 0; i < 2; ++i) {
chart[i].removeAllPlots();
double offset = 0.0;
Distribution distribution = null;
switch (i) {
case 0:
distribution = optionsPanels.get(PriorType.NORMAL_PRIOR).getDistribution();
break;
case 1:
distribution = optionsPanels.get(PriorType.GAMMA_PRIOR).getDistribution();
break;
}
chart[i].addPlot(new PDFPlot(distribution, offset));
if (distribution != null) {
quantileText[i].setText(formatter.format(distribution.quantile(0.025)) +
"\n" + formatter.format(distribution.quantile(0.05)) +
"\n" + formatter.format(distribution.quantile(0.5)) +
"\n" + formatter.format(distribution.quantile(0.95)) +
"\n" + formatter.format(distribution.quantile(0.975)));
}
}
}
示例7: NormalGammaPrecisionGibbsOperator
import dr.math.distributions.Distribution; //导入依赖的package包/类
public NormalGammaPrecisionGibbsOperator(DistributionLikelihood inLikelihood, Distribution prior,
double weight) {
if (!(prior instanceof GammaDistribution || prior instanceof GammaDistributionModel))
throw new RuntimeException("Precision prior must be Gamma");
Distribution likelihood = inLikelihood.getDistribution();
this.dataList = inLikelihood.getDataList();
if (likelihood instanceof NormalDistributionModel) {
this.precisionParameter = (Parameter) ((NormalDistributionModel) likelihood).getPrecision();
this.meanParameter = (Parameter) ((NormalDistributionModel) likelihood).getMean();
} else if (likelihood instanceof LogNormalDistributionModel) {
this.precisionParameter = ((LogNormalDistributionModel) likelihood).getPrecisionParameter();
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMeanParameter();
isLog = true;
} else
throw new RuntimeException("Likelihood must be Normal or log Normal");
if (precisionParameter == null)
throw new RuntimeException("Must characterize likelihood in terms of a precision parameter");
this.prior = prior;
setWeight(weight);
}
示例8: NormalNormalMeanGibbsOperator
import dr.math.distributions.Distribution; //导入依赖的package包/类
public NormalNormalMeanGibbsOperator(DistributionLikelihood inLikelihood, Distribution prior,
double weight) {
if (!(prior instanceof NormalDistribution || prior instanceof NormalDistributionModel))
throw new RuntimeException("Mean prior must be Normal");
this.likelihood = inLikelihood.getDistribution();
this.dataList = inLikelihood.getDataList();
if (likelihood instanceof NormalDistributionModel)
this.meanParameter = (Parameter) ((NormalDistributionModel) likelihood).getMean();
else if (likelihood instanceof LogNormalDistributionModel) {
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMeanParameter();
isLog = true;
} else
throw new RuntimeException("Likelihood must be Normal or log Normal");
this.prior = prior;
setWeight(weight);
}
示例9: ModelSpecificPseudoPriorLikelihood
import dr.math.distributions.Distribution; //导入依赖的package包/类
public ModelSpecificPseudoPriorLikelihood(
Distribution prior,
Distribution pseudoPrior,
Parameter modelIndicator,
int[] models){
super(prior);
this.prior = prior;
this.pseudoPrior = pseudoPrior;
this.models = models;
this.modelIndicator = modelIndicator;
}
示例10: TwoPartsDistributionLikelihood
import dr.math.distributions.Distribution; //导入依赖的package包/类
public TwoPartsDistributionLikelihood(
Distribution prior,
Distribution pseudoPrior,
Parameter bitVector,
int paramIndex){
super(prior);
this.prior = distribution;
this.pseudoPrior = pseudoPrior;
this.bitVector = bitVector;
this.paramIndex = paramIndex;
}
示例11: DistributionLikelihood
import dr.math.distributions.Distribution; //导入依赖的package包/类
public DistributionLikelihood(Distribution distribution, double offset, boolean evaluateEarly, double scale) {
super(null);
this.distribution = distribution;
this.offset = offset;
this.evaluateEarly = evaluateEarly;
this.scale=scale;
}
示例12: RegressionGibbsPrecisionOperator
import dr.math.distributions.Distribution; //导入依赖的package包/类
public RegressionGibbsPrecisionOperator(LinearRegression linearModel, Parameter precision, Distribution prior) {
super();
if (!(prior instanceof GammaDistribution || prior instanceof GammaDistributionModel))
throw new RuntimeException("Precision prior must be Gamma");
this.prior = prior;
this.linearModel = linearModel;
this.precision = precision;
this.dim = precision.getDimension();
scaleDesign = linearModel.getScaleDesign();
N = linearModel.getDependentVariable().getDimension();
}
示例13: NormalGammaPrecisionGibbsOperator
import dr.math.distributions.Distribution; //导入依赖的package包/类
public NormalGammaPrecisionGibbsOperator(DistributionLikelihood inLikelihood, Distribution prior,
double weight) {
if (!(prior instanceof GammaDistribution || prior instanceof GammaDistributionModel))
throw new RuntimeException("Precision prior must be Gamma");
Distribution likelihood = inLikelihood.getDistribution();
this.dataList = inLikelihood.getDataList();
if (likelihood instanceof NormalDistributionModel) {
this.precisionParameter = (Parameter) ((NormalDistributionModel) likelihood).getPrecision();
this.meanParameter = (Parameter) ((NormalDistributionModel) likelihood).getMean();
} else if (likelihood instanceof LogNormalDistributionModel) {
if (((LogNormalDistributionModel) likelihood).getParameterization() == LogNormalDistributionModel.Parameterization.MU_PRECISION) {
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMuParameter();
} else {
throw new RuntimeException("Must characterize likelihood in terms of mu and precision parameters");
}
this.precisionParameter = ((LogNormalDistributionModel) likelihood).getPrecisionParameter();
isLog = true;
} else
throw new RuntimeException("Likelihood must be Normal or log Normal");
if (precisionParameter == null)
throw new RuntimeException("Must characterize likelihood in terms of a precision parameter");
this.prior = prior;
setWeight(weight);
}
示例14: setupChart
import dr.math.distributions.Distribution; //导入依赖的package包/类
void setupChart() {
chart.removeAllPlots();
if (hasInvalidInput(false)) {
quantileText.setText("Invalid input");
return;
}
PriorType priorType = (PriorType) priorCombo.getSelectedItem();
if (priorType == null) {
priorType = parameter.priorType;
priorCombo.setSelectedItem(priorType);
}
PriorOptionsPanel priorOptionsPanel = optionsPanels.get(priorType);
double offset = 0.0; // TODO is this used or duplicated to OffsetPositiveDistribution?
// this does not refresh dist from parameter truncation lower/upper, it get them from GUI
Distribution distribution = priorOptionsPanel.getDistribution(parameter);
chart.addPlot(new PDFPlot(distribution, offset));
if (distribution != null) {
quantileText.setText(formatter.format(distribution.quantile(0.025)) +
"\n" + formatter.format(distribution.quantile(0.05)) +
"\n" + formatter.format(distribution.quantile(0.5)) +
"\n" + formatter.format(distribution.quantile(0.95)) +
"\n" + formatter.format(distribution.quantile(0.975)));
}
}
示例15: getDistribution
import dr.math.distributions.Distribution; //导入依赖的package包/类
public Distribution getDistribution() {
return new NormalDistribution(getValue(0), getValue(1));
}