本文整理汇总了Java中dr.inference.mcmc.MCMC类的典型用法代码示例。如果您正苦于以下问题:Java MCMC类的具体用法?Java MCMC怎么用?Java MCMC使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
MCMC类属于dr.inference.mcmc包,在下文中一共展示了MCMC类的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: main
import dr.inference.mcmc.MCMC; //导入依赖的package包/类
public static void main(String[] arg) throws IOException, TraceException {
// constructing random variable representing mean of normal distribution
Variable.D mean = new Variable.D("mean", 1.0);
// give mean a uniform prior [-1000, 1000]
mean.addBounds(new Parameter.DefaultBounds(1000, -1000, 1));
// constructing random variable representing stdev of normal distribution
Variable.D stdev = new Variable.D("stdev", 1.0);
// give stdev a uniform prior [0, 1000]
stdev.addBounds(new Parameter.DefaultBounds(1000, 0, 1));
// construct normal distribution model
NormalDistributionModel normal = new NormalDistributionModel(mean, stdev);
// construct a likelihood for normal distribution
DistributionLikelihood likelihood = new DistributionLikelihood(normal);
// construct data
Attribute.Default<double[]> d = new Attribute.Default<double[]>(
"x", new double[]{1, 2, 3, 4, 5, 6, 7, 8, 9});
// add data (representing 9 independent observations) to likelihood
likelihood.addData(d);
// construct two "operators" to be used as the proposal distribution
MCMCOperator meanMove = new ScaleOperator(mean, 0.75);
MCMCOperator stdevMove = new ScaleOperator(stdev, 0.75);
// construct a logger to log progress of MCMC run to stdout (screen)
MCLogger logger1 = new MCLogger(100);
logger1.add(mean);
logger1.add(stdev);
// construct a logger to log to a log file for later analysis
MCLogger logger2 = new MCLogger("tutorial1.log", 100, false, 0);
logger2.add(mean);
logger2.add(stdev);
// construct MCMC object
MCMC mcmc = new MCMC("tutorial1:normal");
// initialize MCMC with chain length, likelihood, operators and loggers
mcmc.init(100000, likelihood, new MCMCOperator[]{meanMove, stdevMove}, new Logger[]{logger1, logger2});
// run the mcmc
mcmc.chain();
// perform post-analysis
TraceAnalysis.report("tutorial1.log");
}
示例2: testLognormalPrior
import dr.inference.mcmc.MCMC; //导入依赖的package包/类
public void testLognormalPrior() {
// ConstantPopulation constant = new ConstantPopulation(Units.Type.YEARS);
// constant.setN0(popSize); // popSize
Parameter popSize = new Parameter.Default(6.0);
popSize.setId(ConstantPopulationModelParser.POPULATION_SIZE);
ConstantPopulationModel demo = new ConstantPopulationModel(popSize, Units.Type.YEARS);
//Likelihood
Likelihood dummyLikelihood = new DummyLikelihood(demo);
// Operators
OperatorSchedule schedule = new SimpleOperatorSchedule();
MCMCOperator operator = new ScaleOperator(popSize, 0.75);
operator.setWeight(1.0);
schedule.addOperator(operator);
// Log
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 1000, false);
// loggers[0].add(treeLikelihood);
loggers[0].add(popSize);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
// loggers[1].add(treeLikelihood);
loggers[1].add(popSize);
// MCMC
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions();
options.setChainLength(1000000);
options.setUseCoercion(true); // autoOptimize = true
options.setCoercionDelay(100);
options.setTemperature(1.0);
options.setFullEvaluationCount(2000);
DistributionLikelihood logNormalLikelihood = new DistributionLikelihood(new LogNormalDistribution(1.0, 1.0), 0); // meanInRealSpace="false"
logNormalLikelihood.addData(popSize);
List<Likelihood> likelihoods = new ArrayList<Likelihood>();
likelihoods.add(logNormalLikelihood);
Likelihood prior = new CompoundLikelihood(0, likelihoods);
likelihoods.clear();
likelihoods.add(dummyLikelihood);
Likelihood likelihood = new CompoundLikelihood(-1, likelihoods);
likelihoods.clear();
likelihoods.add(prior);
likelihoods.add(likelihood);
Likelihood posterior = new CompoundLikelihood(0, likelihoods);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, posterior, schedule, loggers);
mcmc.run();
// time
System.out.println(mcmc.getTimer().toString());
// Tracer
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("LognormalPriorTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
// <expectation name="param" value="4.48168907"/>
TraceCorrelation popSizeStats = traceList.getCorrelationStatistics(traceList.getTraceIndex(ConstantPopulationModelParser.POPULATION_SIZE));
System.out.println("Expectation of Log-Normal(1,1) is e^(M+S^2/2) = e^(1.5) = " + Math.exp(1.5));
assertExpectation(ConstantPopulationModelParser.POPULATION_SIZE, popSizeStats, Math.exp(1.5));
}
示例3: testLognormalPrior
import dr.inference.mcmc.MCMC; //导入依赖的package包/类
public void testLognormalPrior() {
// ConstantPopulation constant = new ConstantPopulation(Units.Type.YEARS);
// constant.setN0(popSize); // popSize
Parameter popSize = new Parameter.Default(6.0);
popSize.setId(ConstantPopulationModelParser.POPULATION_SIZE);
ConstantPopulationModel demo = new ConstantPopulationModel(popSize, Units.Type.YEARS);
//Likelihood
Likelihood dummyLikelihood = new DummyLikelihood(demo);
// Operators
OperatorSchedule schedule = new SimpleOperatorSchedule();
MCMCOperator operator = new ScaleOperator(popSize, 0.75);
operator.setWeight(1.0);
schedule.addOperator(operator);
// Log
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 1000, false);
// loggers[0].add(treeLikelihood);
loggers[0].add(popSize);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
// loggers[1].add(treeLikelihood);
loggers[1].add(popSize);
// MCMC
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions(1000000);
DistributionLikelihood logNormalLikelihood = new DistributionLikelihood(new LogNormalDistribution(1.0, 1.0), 0); // meanInRealSpace="false"
logNormalLikelihood.addData(popSize);
List<Likelihood> likelihoods = new ArrayList<Likelihood>();
likelihoods.add(logNormalLikelihood);
Likelihood prior = new CompoundLikelihood(0, likelihoods);
likelihoods.clear();
likelihoods.add(dummyLikelihood);
Likelihood likelihood = new CompoundLikelihood(-1, likelihoods);
likelihoods.clear();
likelihoods.add(prior);
likelihoods.add(likelihood);
Likelihood posterior = new CompoundLikelihood(0, likelihoods);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, posterior, schedule, loggers);
mcmc.run();
// time
System.out.println(mcmc.getTimer().toString());
// Tracer
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("LognormalPriorTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
// <expectation name="param" value="4.48168907"/>
TraceCorrelation popSizeStats = traceList.getCorrelationStatistics(traceList.getTraceIndex(ConstantPopulationModelParser.POPULATION_SIZE));
System.out.println("Expectation of Log-Normal(1,1) is e^(M+S^2/2) = e^(1.5) = " + Math.exp(1.5));
assertExpectation(ConstantPopulationModelParser.POPULATION_SIZE, popSizeStats, Math.exp(1.5));
}
示例4: MCMCMC
import dr.inference.mcmc.MCMC; //导入依赖的package包/类
public MCMCMC(MCMC[] mcmcs, MCMCMCOptions mcmcmcOptions) {
this.mcmcmcOptions = mcmcmcOptions;
if (mcmcmcOptions.getChainTemperatures()[0] != 1.0) {
throw new RuntimeException("The first chain in the array should be cold (temperature = 1.0)");
}
coldChain = 0;
this.mcmcOptions = mcmcs[coldChain].getOptions();
// Get all the loggers out of all the chains. We will only use the
// loggers of the cold chain but we need to swap the formatters around
// so that which every chain is cold always writes to the same destination.
mcLoggers = new MCLogger[mcmcs.length][];
for (int i = 0; i < mcmcs.length; i++) {
Logger[] loggers = mcmcs[i].getLoggers();
mcLoggers[i] = new MCLogger[loggers.length];
for (int j = 0; j < loggers.length; j++) {
mcLoggers[i][j] = (MCLogger) loggers[j];
}
if (mcLoggers[i] == null) {
throw new RuntimeException("There are no loggers in the MCMC chains.");
}
}
// Get all the operator schedules. The tuning values of these must be swapped
// around as the temperatures are swapped.
schedules = new OperatorSchedule[mcmcs.length];
for (int i = 0; i < schedules.length; i++) {
schedules[i] = mcmcs[i].getOperatorSchedule();
}
chains = new MarkovChain[mcmcs.length];
chains[0] = mcmcs[0].getMarkovChain();
for (int i = 1; i < chains.length; i++) {
chains[i] = mcmcs[i].getMarkovChain();
MCMCCriterion acceptor = ((MCMCCriterion) chains[i].getAcceptor());
acceptor.setTemperature(mcmcmcOptions.getChainTemperatures()[i]);
}
}
示例5: getParserName
import dr.inference.mcmc.MCMC; //导入依赖的package包/类
public String getParserName() {
return MCMC;
}
示例6: getReturnType
import dr.inference.mcmc.MCMC; //导入依赖的package包/类
public Class getReturnType() {
return MCMC.class;
}
示例7: randomLocalYuleTester
import dr.inference.mcmc.MCMC; //导入依赖的package包/类
private void randomLocalYuleTester(TreeModel treeModel, Parameter I, Parameter b, OperatorSchedule schedule) {
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions(1000000);
TreeLengthStatistic tls = new TreeLengthStatistic(TL, treeModel);
TreeHeightStatistic rootHeight = new TreeHeightStatistic(TREE_HEIGHT, treeModel);
Parameter m = new Parameter.Default("m", 1.0, 0.0, Double.MAX_VALUE);
SpeciationModel speciationModel = new RandomLocalYuleModel(b, I, m, false, Units.Type.YEARS, 4);
Likelihood likelihood = new SpeciationLikelihood(treeModel, speciationModel, "randomYule.like");
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 100, false);
loggers[0].add(likelihood);
loggers[0].add(rootHeight);
loggers[0].add(tls);
loggers[0].add(I);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
loggers[1].add(likelihood);
loggers[1].add(rootHeight);
loggers[1].add(tls);
loggers[1].add(I);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, likelihood, schedule, loggers);
mcmc.run();
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("yuleModelTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
TraceCorrelation tlStats =
traceList.getCorrelationStatistics(traceList.getTraceIndex("root." + birthRateIndicator));
System.out.println("mean = " + tlStats.getMean());
System.out.println("expected mean = 0.5");
assertExpectation("root." + birthRateIndicator, tlStats, 0.5);
}
示例8: yuleTester
import dr.inference.mcmc.MCMC; //导入依赖的package包/类
private void yuleTester(TreeModel treeModel, OperatorSchedule schedule) {
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions();
options.setChainLength(1000000);
options.setUseCoercion(true);
options.setCoercionDelay(100);
options.setTemperature(1.0);
options.setFullEvaluationCount(2000);
TreeLengthStatistic tls = new TreeLengthStatistic(TL, treeModel);
TreeHeightStatistic rootHeight = new TreeHeightStatistic(TREE_HEIGHT, treeModel);
Parameter b = new Parameter.Default("b", 2.0, 0.0, Double.MAX_VALUE);
Parameter d = new Parameter.Default("d", 0.0, 0.0, Double.MAX_VALUE);
SpeciationModel speciationModel = new BirthDeathGernhard08Model(b, d, null, BirthDeathGernhard08Model.TreeType.TIMESONLY,
Units.Type.YEARS);
Likelihood likelihood = new SpeciationLikelihood(treeModel, speciationModel, "yule.like");
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 100, false);
loggers[0].add(likelihood);
loggers[0].add(rootHeight);
loggers[0].add(tls);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
loggers[1].add(likelihood);
loggers[1].add(rootHeight);
loggers[1].add(tls);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, likelihood, schedule, loggers);
mcmc.run();
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("yuleModelTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
// expectation of root height for 4 tips and lambda = 2
// rootHeight = 0.541666
// TL = 1.5
TraceCorrelation tlStats =
traceList.getCorrelationStatistics(traceList.getTraceIndex(TL));
assertExpectation(TL, tlStats, 1.5);
TraceCorrelation treeHeightStats =
traceList.getCorrelationStatistics(traceList.getTraceIndex(TREE_HEIGHT));
assertExpectation(TREE_HEIGHT, treeHeightStats, 0.5416666);
}
示例9: randomLocalYuleTester
import dr.inference.mcmc.MCMC; //导入依赖的package包/类
private void randomLocalYuleTester(TreeModel treeModel, Parameter I, Parameter b, OperatorSchedule schedule) {
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions();
options.setChainLength(1000000);
options.setUseCoercion(true);
options.setCoercionDelay(100);
options.setTemperature(1.0);
options.setFullEvaluationCount(2000);
TreeLengthStatistic tls = new TreeLengthStatistic(TL, treeModel);
TreeHeightStatistic rootHeight = new TreeHeightStatistic(TREE_HEIGHT, treeModel);
Parameter m = new Parameter.Default("m", 1.0, 0.0, Double.MAX_VALUE);
SpeciationModel speciationModel = new RandomLocalYuleModel(b, I, m, false, Units.Type.YEARS, 4);
Likelihood likelihood = new SpeciationLikelihood(treeModel, speciationModel, "randomYule.like");
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 100, false);
loggers[0].add(likelihood);
loggers[0].add(rootHeight);
loggers[0].add(tls);
loggers[0].add(I);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
loggers[1].add(likelihood);
loggers[1].add(rootHeight);
loggers[1].add(tls);
loggers[1].add(I);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, likelihood, schedule, loggers);
mcmc.run();
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("yuleModelTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
TraceCorrelation tlStats =
traceList.getCorrelationStatistics(traceList.getTraceIndex("root." + birthRateIndicator));
System.out.println("mean = " + tlStats.getMean());
System.out.println("expected mean = 0.5");
assertExpectation("root." + birthRateIndicator, tlStats, 0.5);
}
示例10: yuleTester
import dr.inference.mcmc.MCMC; //导入依赖的package包/类
private void yuleTester(TreeModel treeModel, OperatorSchedule schedule) {
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions(1000000);
TreeLengthStatistic tls = new TreeLengthStatistic(TL, treeModel);
TreeHeightStatistic rootHeight = new TreeHeightStatistic(TREE_HEIGHT, treeModel);
Parameter b = new Parameter.Default("b", 2.0, 0.0, Double.MAX_VALUE);
Parameter d = new Parameter.Default("d", 0.0, 0.0, Double.MAX_VALUE);
SpeciationModel speciationModel = new BirthDeathGernhard08Model(b, d, null, BirthDeathGernhard08Model.TreeType.TIMESONLY,
Units.Type.YEARS);
Likelihood likelihood = new SpeciationLikelihood(treeModel, speciationModel, "yule.like");
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 100, false);
loggers[0].add(likelihood);
loggers[0].add(rootHeight);
loggers[0].add(tls);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
loggers[1].add(likelihood);
loggers[1].add(rootHeight);
loggers[1].add(tls);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, likelihood, schedule, loggers);
mcmc.run();
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("yuleModelTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
// expectation of root height for 4 tips and lambda = 2
// rootHeight = 0.541666
// TL = 1.5
TraceCorrelation tlStats =
traceList.getCorrelationStatistics(traceList.getTraceIndex(TL));
assertExpectation(TL, tlStats, 1.5);
TraceCorrelation treeHeightStats =
traceList.getCorrelationStatistics(traceList.getTraceIndex(TREE_HEIGHT));
assertExpectation(TREE_HEIGHT, treeHeightStats, 0.5416666);
}