当前位置: 首页>>代码示例>>Java>>正文


Java NumberVector类代码示例

本文整理汇总了Java中de.lmu.ifi.dbs.elki.data.NumberVector的典型用法代码示例。如果您正苦于以下问题:Java NumberVector类的具体用法?Java NumberVector怎么用?Java NumberVector使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


NumberVector类属于de.lmu.ifi.dbs.elki.data包,在下文中一共展示了NumberVector类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: minDist

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
@Override
@Reference(authors = "Erich Schubert, Arthur Zimek and Hans-Peter Kriegel", //
    title = "Geodetic Distance Queries on R-Trees for Indexing Geographic Data", //
    booktitle = "13th Int. Symposium on Advances in Spatial and Temporal Databases", //
    url = "http://dx.doi.org/10.1007/978-3-642-40235-7_9")
public double minDist(SpatialComparable mbr1, SpatialComparable mbr2) {
  if(mbr1 instanceof NumberVector) {
    if(mbr2 instanceof NumberVector) {
      return distance((NumberVector) mbr1, (NumberVector) mbr2);
    }
    else {
      NumberVector o1 = (NumberVector) mbr1;
      return model.minDistDeg(o1.doubleValue(dimlat), o1.doubleValue(dimlng), mbr2.getMin(dimlat), mbr2.getMin(dimlng), mbr2.getMax(dimlat), mbr2.getMax(dimlng));
    }
  }
  else {
    if(mbr2 instanceof NumberVector) {
      NumberVector o2 = (NumberVector) mbr2;
      return model.minDistDeg(o2.doubleValue(dimlat), o2.doubleValue(dimlng), mbr1.getMin(dimlat), mbr1.getMin(dimlng), mbr1.getMax(dimlat), mbr1.getMax(dimlng));
    }
    else {
      throw new NotImplementedException("This distance function cannot - yet - be used with this algorithm, as the lower bound rectangle to rectangle distances have not yet been formalized for geodetic data.");
    }
  }
}
 
开发者ID:elki-project,项目名称:elki,代码行数:26,代码来源:DimensionSelectingLatLngDistanceFunction.java

示例2: getVisibleEdges

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
/**
 * Get the visible (non-0) edges of a hypercube
 *
 * @param proj Projection
 * @param s_min Minimum value (in data space)
 * @param s_max Maximum value (in data space)
 * @return Edge list
 */
private static ArrayList<double[]> getVisibleEdges(Projection2D proj, NumberVector s_min, NumberVector s_max) {
  final int dim = s_min.getDimensionality();
  double[] s_deltas = new double[dim];
  for(int i = 0; i < dim; i++) {
    s_deltas[i] = s_max.doubleValue(i) - s_min.doubleValue(i);
  }
  ArrayList<double[]> r_edges = new ArrayList<>(dim);
  for(int i = 0; i < dim; i++) {
    double[] delta = new double[dim];
    delta[i] = s_deltas[i];
    double[] deltas = proj.fastProjectRelativeDataToRenderSpace(delta);
    if(deltas[0] != 0 || deltas[1] != 0) {
      r_edges.add(deltas);
    }
  }
  return r_edges;
}
 
开发者ID:elki-project,项目名称:elki,代码行数:26,代码来源:SVGHyperCube.java

示例3: computeNNForUniformData

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
/**
 * Search nearest neighbors for <em>artificial, uniform</em> data.
 *
 * @param knnQuery KNN query
 * @param min Data minima
 * @param extend Data extend
 * @return Aggregated 1NN distances
 */
protected double computeNNForUniformData(final KNNQuery<NumberVector> knnQuery, final double[] min, final double[] extend) {
  final Random rand = random.getSingleThreadedRandom();
  final int dim = min.length;

  double[] buf = new double[dim];

  double u = 0.;
  for(int i = 0; i < sampleSize; i++) {
    // New random vector
    for(int d = 0; d < buf.length; d++) {
      buf[d] = min[d] + (rand.nextDouble() * extend[d]);
    }
    double kdist = knnQuery.getKNNForObject(DoubleVector.wrap(buf), k).getKNNDistance();
    u += MathUtil.powi(kdist, dim);
  }
  return u;
}
 
开发者ID:elki-project,项目名称:elki,代码行数:26,代码来源:HopkinsStatisticClusteringTendency.java

示例4: naiveQueryDense

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
/**
 * Query the most similar objects, dense version.
 * 
 * @param obj Query object
 * @param scores Score storage
 * @param cands Non-zero objects set
 * @return Result
 */
private double naiveQueryDense(NumberVector obj, WritableDoubleDataStore scores, HashSetModifiableDBIDs cands) {
  double len = 0.; // Length of query object, for final normalization
  for(int dim = 0, max = obj.getDimensionality(); dim < max; dim++) {
    final double val = obj.doubleValue(dim);
    if(val == 0. || val != val) {
      continue;
    }
    len += val * val;
    // No matching documents in index:
    if(dim >= index.size()) {
      continue;
    }
    ModifiableDoubleDBIDList column = index.get(dim);
    for(DoubleDBIDListIter n = column.iter(); n.valid(); n.advance()) {
      scores.increment(n, n.doubleValue() * val);
      cands.add(n);
    }
  }
  return FastMath.sqrt(len);
}
 
开发者ID:elki-project,项目名称:elki,代码行数:29,代码来源:InMemoryInvertedIndex.java

示例5: minDistObject

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
protected double minDistObject(SpatialComparable mbr, NumberVector v) {
  double sqrDist = 0;
  for(int d = BitsUtil.nextSetBit(dimensions, 0); d >= 0; d = BitsUtil.nextSetBit(dimensions, d + 1)) {
    final double delta;
    final double value = v.doubleValue(d);
    final double omin = mbr.getMin(d);
    if(value < omin) {
      delta = omin - value;
    }
    else {
      final double omax = mbr.getMax(d);
      if(value > omax) {
        delta = value - omax;
      }
      else {
        continue;
      }
    }
    sqrDist += FastMath.pow(delta, p);
  }
  return FastMath.pow(sqrDist, 1. / p);
}
 
开发者ID:elki-project,项目名称:elki,代码行数:23,代码来源:SubspaceLPNormDistanceFunction.java

示例6: updateE

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
@Override
public void updateE(NumberVector vec, double wei) {
  assert (vec.getDimensionality() == mean.length);
  final double nwsum = wsum + wei;
  // Compute new means
  for(int i = 0; i < mean.length; i++) {
    final double delta = vec.doubleValue(i) - mean[i];
    final double rval = delta * wei / nwsum;
    nmea[i] = mean[i] + rval;
  }
  // Update variances
  for(int i = 0; i < mean.length; i++) {
    // We DO want to use the new mean once and the old mean once!
    // It does not matter which one is which.
    double vi = vec.doubleValue(i);
    variances[i] += (vi - nmea[i]) * (vi - mean[i]) * wei;
  }
  // Use new values.
  wsum = nwsum;
  System.arraycopy(nmea, 0, mean, 0, nmea.length);
}
 
开发者ID:elki-project,项目名称:elki,代码行数:22,代码来源:DiagonalGaussianModel.java

示例7: projectDense

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
/**
 * Slower version, for dense multiplication.
 *
 * @param in Input vector
 * @return Projected data.
 */
private double[] projectDense(NumberVector in, double[] ret) {
  final int k = this.k;
  final double dim = MathUtil.min(buf.length, in.getDimensionality());
  for(int i = 0; i < dim; i++) {
    final boolean[] row = mat[i];
    double vali = in.doubleValue(i);
    for(int o = 0; o < k; o++) {
      if(row[o]) {
        ret[o] += vali;
      }
      else {
        ret[o] -= vali;
      }
    }
  }
  return ret;
}
 
开发者ID:elki-project,项目名称:elki,代码行数:24,代码来源:SimplifiedRandomHyperplaneProjectionFamily.java

示例8: minDist

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
@Override
public double minDist(SpatialComparable mbr1, SpatialComparable mbr2) {
  final int dim1 = mbr1.getDimensionality(), dim2 = mbr2.getDimensionality();
  final int mindim = (dim1 < dim2) ? dim1 : dim2;

  final NumberVector v1 = (mbr1 instanceof NumberVector) ? (NumberVector) mbr1 : null;
  final NumberVector v2 = (mbr2 instanceof NumberVector) ? (NumberVector) mbr2 : null;

  double agg = (v1 != null) //
      ? (v2 != null) ? preDistance(v1, v2, 0, mindim) : preDistanceVM(v1, mbr2, 0, mindim) //
      : (v2 != null) ? preDistanceVM(v2, mbr1, 0, mindim) : preDistanceMBR(mbr1, mbr2, 0, mindim);
  // first object has more dimensions.
  if(dim1 > mindim) {
    agg += (v1 != null) ? preNorm(v1, mindim, dim1) : preNormMBR(mbr1, mindim, dim1);
  }
  // second object has more dimensions.
  if(dim2 > mindim) {
    agg += (v2 != null) ? preNorm(v2, mindim, dim2) : preNormMBR(mbr2, mindim, dim2);
  }
  return agg;
}
 
开发者ID:elki-project,项目名称:elki,代码行数:22,代码来源:ManhattanDistanceFunction.java

示例9: assignProbabilitiesToInstances

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
/**
 * Assigns the current probability values to the instances in the database and
 * compute the expectation value of the current mixture of distributions.
 * 
 * Computed as the sum of the logarithms of the prior probability of each
 * instance.
 * 
 * @param relation the database used for assignment to instances
 * @param models Cluster models
 * @param probClusterIGivenX Output storage for cluster probabilities
 * @return the expectation value of the current mixture of distributions
 */
public static double assignProbabilitiesToInstances(Relation<? extends NumberVector> relation, List<? extends EMClusterModel<?>> models, WritableDataStore<double[]> probClusterIGivenX) {
  final int k = models.size();
  double emSum = 0.;

  for(DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
    NumberVector vec = relation.get(iditer);
    double[] probs = new double[k];
    for(int i = 0; i < k; i++) {
      probs[i] = models.get(i).estimateLogDensity(vec);
    }
    double logP = logSumExp(probs);
    emSum += logP > MIN_LOGLIKELIHOOD ? logP : MIN_LOGLIKELIHOOD;
    for(int i = 0; i < k; i++) {
      probs[i] = FastMath.exp(probs[i] - logP);
    }
    probClusterIGivenX.put(iditer, probs);
  }
  return emSum / relation.size();
}
 
开发者ID:elki-project,项目名称:elki,代码行数:32,代码来源:EM.java

示例10: guessFactory

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
/**
 * Try to guess the appropriate factory.
 * 
 * @param in Input type
 * @param <V> Vector type
 * @return Factory
 */
@SuppressWarnings("unchecked")
public static <V extends NumberVector> NumberVector.Factory<V> guessFactory(SimpleTypeInformation<V> in) {
  NumberVector.Factory<V> factory = null;
  if(in instanceof VectorTypeInformation) {
    factory = (NumberVector.Factory<V>) ((VectorTypeInformation<V>) in).getFactory();
  }
  if(factory == null) {
    // FIXME: hack. Add factories to simple type information, too?
    try {
      Field f = in.getRestrictionClass().getField("FACTORY");
      factory = (NumberVector.Factory<V>) f.get(null);
    }
    catch(Exception e) {
      LoggingUtil.warning("Cannot determine factory for type " + in.getRestrictionClass(), e);
    }
  }
  return factory;
}
 
开发者ID:elki-project,项目名称:elki,代码行数:26,代码来源:FilterUtil.java

示例11: run

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
/**
 * Run the actual algorithm.
 * 
 * @param relation Relation
 * @return Result
 */
public OutlierResult run(Relation<? extends NumberVector> relation) {
  WritableDoubleDataStore scores = DataStoreUtil.makeDoubleStorage(relation.getDBIDs(), DataStoreFactory.HINT_HOT);
  DoubleMinMax minmax = new DoubleMinMax();
  Mean m = new Mean();
  for(DBIDIter iditer = relation.iterDBIDs(); iditer.valid(); iditer.advance()) {
    m.reset();
    NumberVector nv = relation.get(iditer);
    for (int i = 0; i < nv.getDimensionality(); i++) {
      m.put(nv.doubleValue(i));
    }
    final double score = m.getMean();
    scores.putDouble(iditer, score);
    minmax.put(score);
  }
  DoubleRelation scoreres = new MaterializedDoubleRelation("Trivial mean score", "mean-outlier", scores, relation.getDBIDs());
  OutlierScoreMeta meta = new BasicOutlierScoreMeta(minmax.getMin(), minmax.getMax());
  return new OutlierResult(meta, scoreres);
}
 
开发者ID:elki-project,项目名称:elki,代码行数:25,代码来源:TrivialAverageCoordinateOutlier.java

示例12: logLikelihoodAlternate

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
/**
 * Computes log likelihood of an entire clustering.
 *
 * Version as used by Zhao et al.
 *
 * @param relation Data relation
 * @param clustering Clustering
 * @param distanceFunction Distance function
 * @param <V> Vector type
 * @return Log Likelihood.
 */
@Reference(authors = "Q. Zhao, M. Xu, P. Fränti", //
    title = "Knee Point Detection on Bayesian Information Criterion", //
    booktitle = "20th IEEE International Conference on Tools with Artificial Intelligence", //
    url = "http://dx.doi.org/10.1109/ICTAI.2008.154")
public static <V extends NumberVector> double logLikelihoodAlternate(Relation<V> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistanceFunction<? super V> distanceFunction) {
  List<? extends Cluster<? extends MeanModel>> clusters = clustering.getAllClusters();
  // dimensionality of data points
  final int dim = RelationUtil.dimensionality(relation);
  // number of clusters
  final int m = clusters.size();

  // number of objects in the clustering
  int n = 0;
  // cluster sizes
  int[] n_i = new int[m];
  // variances
  double[] d_i = new double[m];

  // Iterate over clusters:
  Iterator<? extends Cluster<? extends MeanModel>> it = clusters.iterator();
  for(int i = 0; it.hasNext(); ++i) {
    Cluster<? extends MeanModel> cluster = it.next();
    n += n_i[i] = cluster.size();
    d_i[i] = varianceOfCluster(cluster, distanceFunction, relation);
  }

  // log likelihood of this clustering
  double logLikelihood = 0.;

  // Aggregate
  for(int i = 0; i < m; i++) {
    logLikelihood += n_i[i] * FastMath.log(n_i[i] / (double) n) // ni log ni/n
        - n_i[i] * dim * .5 * MathUtil.LOGTWOPI // ni*d/2 log2pi
        - n_i[i] * .5 * FastMath.log(d_i[i]) // ni/2 log sigma_i
        - (n_i[i] - m) * .5; // (ni-m)/2
  }
  return logLikelihood;
}
 
开发者ID:elki-project,项目名称:elki,代码行数:50,代码来源:AbstractKMeansQualityMeasure.java

示例13: findParent

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
/**
 * Returns the parent of the specified cluster
 *
 * @param relation the relation storing the objects
 * @param child the child to search the parent for
 * @param clustersMap the map containing the clusters
 * @return the parent of the specified cluster
 */
private Pair<long[], ArrayModifiableDBIDs> findParent(Relation<V> relation, Pair<long[], ArrayModifiableDBIDs> child, Object2ObjectMap<long[], List<ArrayModifiableDBIDs>> clustersMap) {
  Centroid child_centroid = ProjectedCentroid.make(child.first, relation, child.second);

  Pair<long[], ArrayModifiableDBIDs> result = null;
  int resultCardinality = -1;

  long[] childPV = child.first;
  int childCardinality = BitsUtil.cardinality(childPV);
  for(long[] parentPV : clustersMap.keySet()) {
    int parentCardinality = BitsUtil.cardinality(parentPV);
    if(parentCardinality >= childCardinality) {
      continue;
    }
    if(resultCardinality != -1 && parentCardinality <= resultCardinality) {
      continue;
    }

    long[] pv = BitsUtil.andCMin(childPV, parentPV);
    if(BitsUtil.equal(pv, parentPV)) {
      List<ArrayModifiableDBIDs> parentList = clustersMap.get(parentPV);
      for(ArrayModifiableDBIDs parent : parentList) {
        NumberVector parent_centroid = ProjectedCentroid.make(parentPV, relation, parent);
        double d = weightedDistance(child_centroid, parent_centroid, parentPV);
        if(d <= 2 * epsilon) {
          result = new Pair<>(parentPV, parent);
          resultCardinality = parentCardinality;
          break;
        }
      }
    }
  }

  return result;
}
 
开发者ID:elki-project,项目名称:elki,代码行数:43,代码来源:DiSH.java

示例14: distance

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
@Override
public double distance(NumberVector v1, NumberVector v2) {
  final int dim1 = v1.getDimensionality(), dim2 = v2.getDimensionality();
  final int mindim = (dim1 < dim2) ? dim1 : dim2;
  double agg = preDistance(v1, v2, 0, mindim);
  if(dim1 > mindim) {
    agg += preNorm(v1, mindim, dim1);
  }
  else if(dim2 > mindim) {
    agg += preNorm(v2, mindim, dim2);
  }
  return agg;
}
 
开发者ID:elki-project,项目名称:elki,代码行数:14,代码来源:WeightedManhattanDistanceFunction.java

示例15: buildHullsRecursively

import de.lmu.ifi.dbs.elki.data.NumberVector; //导入依赖的package包/类
/**
 * Recursively step through the clusters to build the hulls.
 * 
 * @param clu Current cluster
 * @param hier Clustering hierarchy
 * @param hulls Hull map
 */
private DoubleObjPair<Polygon> buildHullsRecursively(Cluster<Model> clu, Hierarchy<Cluster<Model>> hier, Map<Object, DoubleObjPair<Polygon>> hulls, Relation<? extends NumberVector> coords) {
  final DBIDs ids = clu.getIDs();

  GrahamScanConvexHull2D hull = new GrahamScanConvexHull2D();
  for(DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
    hull.add(coords.get(iter).toArray());
  }
  double weight = ids.size();
  if(hier != null && hulls != null) {
    final int numc = hier.numChildren(clu);
    if(numc > 0) {
      for(It<Cluster<Model>> iter = hier.iterChildren(clu); iter.valid(); iter.advance()) {
        final Cluster<Model> iclu = iter.get();
        DoubleObjPair<Polygon> poly = hulls.get(iclu);
        if(poly == null) {
          poly = buildHullsRecursively(iclu, hier, hulls, coords);
        }
        // Add inner convex hull to outer convex hull.
        for(ArrayListIter<double[]> vi = poly.second.iter(); vi.valid(); vi.advance()) {
          hull.add(vi.get());
        }
        weight += poly.first / numc;
      }
    }
  }
  DoubleObjPair<Polygon> pair = new DoubleObjPair<>(weight, hull.getHull());
  hulls.put(clu, pair);
  return pair;
}
 
开发者ID:elki-project,项目名称:elki,代码行数:37,代码来源:KMLOutputHandler.java


注:本文中的de.lmu.ifi.dbs.elki.data.NumberVector类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。