本文整理汇总了Java中de.linearbits.subframe.graph.PlotLinesClustered类的典型用法代码示例。如果您正苦于以下问题:Java PlotLinesClustered类的具体用法?Java PlotLinesClustered怎么用?Java PlotLinesClustered使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
PlotLinesClustered类属于de.linearbits.subframe.graph包,在下文中一共展示了PlotLinesClustered类的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: analyze
import de.linearbits.subframe.graph.PlotLinesClustered; //导入依赖的package包/类
/**
* Performs the analysis
* @param file
* @param dataset
* @return
* @throws ParseException
*/
private static PlotGroup analyze(CSVFile file, BenchmarkDataset dataset) throws ParseException{
Series3D series = null;
for (double degree : BenchmarkExperiment4.getGeneralizations()) {
String generalization = String.valueOf(degree);
Series3D _series = getSeriesForLinesPlot(file, dataset, generalization);
if (series == null) {
series = _series;
} else {
series.append(_series);
}
}
List<Plot<?>> plots = new ArrayList<Plot<?>>();
plots.add(new PlotLinesClustered("Dataset: " + dataset.toString(),
new Labels("Suppression rate", "Information loss"),
series));
GnuPlotParams params = new GnuPlotParams();
params.rotateXTicks = 0;
params.keypos = KeyPos.OUTSIDE_TOP;
params.size = 1.5d;
return new PlotGroup("Comparison of different version of entropy", plots, params, 1.0d);
}
示例2: analyze
import de.linearbits.subframe.graph.PlotLinesClustered; //导入依赖的package包/类
/**
* Performs the analysis
* @param file
* @param dataset
* @return
* @throws ParseException
*/
private static PlotGroup analyze(CSVFile file, BenchmarkDataset dataset, BenchmarkUtilityMeasure measure) throws ParseException{
Series3D series = getSeriesForLinesPlot(file, dataset, measure);
List<Plot<?>> plots = new ArrayList<Plot<?>>();
plots.add(new PlotLinesClustered("",
new Labels("Uniqueness", "Information loss [0-1]"),
series));
GnuPlotParams params = new GnuPlotParams();
params.rotateXTicks = 0;
params.keypos = KeyPos.OUTSIDE_TOP;
params.size = 1.5d;
params.minY = 0d;
return new PlotGroup("Comparison of different uniqueness models: " + dataset.toString() + " - " + measure.toString(), plots, params, 1.0d);
}
示例3: analyze
import de.linearbits.subframe.graph.PlotLinesClustered; //导入依赖的package包/类
/**
* Performs the analysis
* @param file
* @param dataset
* @return
* @throws ParseException
*/
private static PlotGroup analyze(CSVFile file, BenchmarkDataset dataset, BenchmarkUtilityMeasure measure) throws ParseException{
Series3D series = getSeriesForLinesPlot(file, dataset, measure);
List<Plot<?>> plots = new ArrayList<Plot<?>>();
plots.add(new PlotLinesClustered("",
new Labels("Uniqueness", "Information loss [0-1]"),
series));
GnuPlotParams params = new GnuPlotParams();
params.rotateXTicks = 0;
params.keypos = KeyPos.OUTSIDE_TOP;
params.size = 1.5d;
params.minY = 0d;
params.maxY = measure == BenchmarkUtilityMeasure.LOSS ? 0.2d : 0.6d;
return new PlotGroup("Comparison of different uniqueness models: " + dataset.toString() + " - " + measure.toString(), plots, params, 1.0d);
}
示例4: getGroup1
import de.linearbits.subframe.graph.PlotLinesClustered; //导入依赖的package包/类
/**
* Returns the first plot group
* @param file
* @return
* @throws ParseException
*/
private static PlotGroup getGroup1(CSVFile file) throws ParseException{
Series3D series = getSeriesForLinesPlot(file, "JavaQuickSort");
series.append(getSeriesForLinesPlot(file, "ColtQuickSort"));
series.append(getSeriesForLinesPlot(file, "ColtMergeSort"));
List<Plot<?>> plots = new ArrayList<Plot<?>>();
plots.add(new PlotLinesClustered("Sorting Arrays",
new Labels("Size", "Execution time [ns]"),
series));
GnuPlotParams params = new GnuPlotParams();
params.rotateXTicks = -90;
params.keypos = KeyPos.TOP_LEFT;
params.size = 0.6d;
return new PlotGroup("Comparison of algorithms", plots, params, 1.0d);
}
示例5: getGroup1
import de.linearbits.subframe.graph.PlotLinesClustered; //导入依赖的package包/类
/**
* Build the first plot group
* @param file
* @return
* @throws ParseException
*/
private static PlotGroup getGroup1(CSVFile file) throws ParseException{
List<Plot<?>> plots = new ArrayList<Plot<?>>();
Series3D series = getSeriesForGroup1(file, "SizeMX");
plots.add(new PlotLinesClustered("Memory consumption of arrays (MX)",
new Labels("Array size", "Size [bytes]"),
series));
series = getSeriesForGroup1(file, "SizeJVM");
plots.add(new PlotLinesClustered("Memory consumption of arrays (JVM)",
new Labels("Array size", "Size [bytes]"),
series));
series = getSeriesForGroup1(file, "SizeInstr");
plots.add(new PlotLinesClustered("Memory consumption of arrays (Instrumentation)",
new Labels("Array size", "Size [bytes]"),
series));
GnuPlotParams params = new GnuPlotParams();
params.rotateXTicks = -90;
params.keypos = KeyPos.TOP_LEFT;
params.size = 0.6d;
params.minY = 0d;
return new PlotGroup("Memory consumption of arrays", plots, params, 1.0d);
}
示例6: testClusteredLines
import de.linearbits.subframe.graph.PlotLinesClustered; //导入依赖的package包/类
@Test
public void testClusteredLines() {
try {
CSVFile file = new CSVFile(new File("src/test/test2.csv"));
Selector<String[]> selector = file.getSelectorBuilder()
.field("Run").equals("Test")
.build();
Series3D series = new Series3D(file, selector,
new Field("Size"),
new Field("Phase"),
new Field("Execution time", Analyzer.VALUE),
new BufferedArithmeticMeanAnalyzer());
PlotLinesClustered plot = new PlotLinesClustered("Creating, sorting and summing up arrays of different sizes",
new Labels("Size", "Execution time [ns]"),
series);
GnuPlotParams params = new GnuPlotParams();
params.rotateXTicks = -90;
params.keypos = KeyPos.TOP_LEFT;
GnuPlot.plot(plot, params, "src/test/test2_6");
checkAndDelete("src/test/test2_6.pdf");
} catch (Exception e) {
fail(e.getMessage());
}
}
示例7: getGroup1
import de.linearbits.subframe.graph.PlotLinesClustered; //导入依赖的package包/类
/**
* Returns the first plot group
* @param file
* @return
* @throws ParseException
*/
private PlotGroup getGroup1(CSVFile file) throws ParseException{
Selector<String[]> selector = file.getSelectorBuilder()
.field("Run").equals("Test")
.build();
Series3D series = new Series3D(file, selector,
new Field("Size"),
new Field("Phase"),
new Field("Execution time", Analyzer.VALUE),
new BufferedArithmeticMeanAnalyzer());
List<Plot<?>> list = new ArrayList<Plot<?>>();
list.add(new PlotHistogramClustered("Creating, sorting and summing up arrays of different sizes",
new Labels("Size", "Execution time [ns]"),
series));
list.add(new PlotHistogramStacked("Creating, sorting and summing up arrays of different sizes",
new Labels("Size", "Execution time [ns]"),
series));
list.add(new PlotLinesClustered("Creating, sorting and summing up arrays of different sizes",
new Labels("Size", "Execution time [ns]"),
series));
GnuPlotParams params = new GnuPlotParams();
params.rotateXTicks = -90;
params.keypos = KeyPos.TOP_LEFT;
params.size = 0.6d;
return new PlotGroup("Clustered plots", list, params, 0.5d);
}
示例8: plot
import de.linearbits.subframe.graph.PlotLinesClustered; //导入依赖的package包/类
/**
* Plots the results from one experiment
* @param file
* @param criterion
* @param measure
* @param suppression
* @return
* @throws ParseException
*/
private static PlotGroup plot(CSVFile file,
BenchmarkPrivacyModel criterion,
BenchmarkQualityMeasure measure,
double suppression) throws ParseException {
// Plotting params
GnuPlotParams params = new GnuPlotParams();
params.rotateXTicks = 0;
params.printValues = false;
params.size = 0.8;
params.logX = false;
params.logY = false;
params.ratio = 0.2d;
params.minY = 0d;
params.printValuesFormatString = "%.0f";
params.maxY = 100d;
params.keypos = KeyPos.TOP_RIGHT;
params.colorize = true;
// Select
Selector<String[]> selector = file.getSelectorBuilder()
.field("Suppression limit").equals(String.valueOf(suppression)).and()
.field("Quality measure").equals(measure.toString()).and()
.field("Privacy model").equals(criterion.toString())
.build();
// Create series
Series3D series = new Series3D(file,
selector,
new Field("Time", Analyzer.VALUE),
new Field("", "Dataset"),
new Field("Quality", Analyzer.VALUE));
// Pre-process
makeClusterable(series);
convertUnits(series);
// Define plot group
Labels labels = new Labels("Execution time [s]", measure.toString()+" Quality [%]");
List<Plot<?>> plots = new ArrayList<Plot<?>>();
plots.add(new PlotLinesClustered("", labels, series));
String caption = "Development of the quality of the SS13ACS dataset over time for " + criterion.toString()+ " with " + (suppression * 100d) + "\\% suppression (higher is better)";
return new PlotGroup(caption, plots, params, 1.0d);
}
示例9: getGroup2
import de.linearbits.subframe.graph.PlotLinesClustered; //导入依赖的package包/类
/**
* Build the second plot group
* @param file
* @return
* @throws ParseException
*/
private static PlotGroup getGroup2(CSVFile file) throws ParseException{
List<Plot<?>> plots = new ArrayList<Plot<?>>();
Series3D series = getSeriesForGroup2(file, "byte[]");
plots.add(new PlotLinesClustered("Memory consumption of arrays (byte[])",
new Labels("Array size", "Size [bytes]"),
series));
series = getSeriesForGroup2(file, "Byte[]");
plots.add(new PlotLinesClustered("Memory consumption of arrays (Byte[])",
new Labels("Array size", "Size [bytes]"),
series));
series = getSeriesForGroup2(file, "int[]");
plots.add(new PlotLinesClustered("Memory consumption of arrays (int[])",
new Labels("Array size", "Size [bytes]"),
series));
series = getSeriesForGroup2(file, "Integer[]");
plots.add(new PlotLinesClustered("Memory consumption of arrays (Integer[])",
new Labels("Array size", "Size [bytes]"),
series));
series = getSeriesForGroup2(file, "long[]");
plots.add(new PlotLinesClustered("Memory consumption of arrays (long[])",
new Labels("Array size", "Size [bytes]"),
series));
series = getSeriesForGroup2(file, "Long[]");
plots.add(new PlotLinesClustered("Memory consumption of arrays (Long[])",
new Labels("Array size", "Size [bytes]"),
series));
GnuPlotParams params = new GnuPlotParams();
params.rotateXTicks = -90;
params.keypos = KeyPos.TOP_LEFT;
params.size = 0.6d;
params.minY = 0d;
return new PlotGroup("Memory consumption of arrays", plots, params, .5d);
}
示例10: GnuPlotLinesClustered
import de.linearbits.subframe.graph.PlotLinesClustered; //导入依赖的package包/类
/**
* Creates a new plot
*
* @param plot
* @param params
*/
protected GnuPlotLinesClustered(PlotLinesClustered plot, GnuPlotParams params) {
super(plot, params);
}