当前位置: 首页>>代码示例>>Java>>正文


Java Parameter类代码示例

本文整理汇总了Java中de.bwaldvogel.liblinear.Parameter的典型用法代码示例。如果您正苦于以下问题:Java Parameter类的具体用法?Java Parameter怎么用?Java Parameter使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


Parameter类属于de.bwaldvogel.liblinear包,在下文中一共展示了Parameter类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: learn

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
/** Learns a new SVM model with the LibSVM package. */
@Override
public Model learn(ExampleSet exampleSet) throws OperatorException {

	Parameter params = getParameters(exampleSet);

	if (exampleSet.size() < 2) {
		throw new UserError(this, 110, 2);
	}

	Linear.resetRandom();
	Linear.disableDebugOutput();
	Problem problem = getProblem(exampleSet);
	de.bwaldvogel.liblinear.Model model = Linear.train(problem, params);

	return new FastMarginModel(exampleSet, model, getParameterAsBoolean(PARAMETER_USE_BIAS));
}
 
开发者ID:transwarpio,项目名称:rapidminer,代码行数:18,代码来源:FastLargeMargin.java

示例2: getFeatureImportance

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
/**
 * @param gatherer 
 * @param features 
 * @return an array of feature IDs (>=1), ordered by feature importance, without zero-importance features.
 */
private static <T extends Serializable, G extends Serializable> int[] getFeatureImportance(ExampleGatherer<T, G> gatherer,
        int[] features) {
	ZScoreFeatureNormalizer scaleFn = ZScoreFeatureNormalizer.fromGatherer(gatherer);
	Parameter param = new Parameter(SolverType.L2R_L2LOSS_SVR, 0.01, 0.001);
	Problem problem = gatherer.generateLibLinearProblem(features, scaleFn);
	Model m = Linear.train(problem, param);
	double[] weights = m.getFeatureWeights();

	int[] ftrImportance = Arrays.stream(features).boxed().sorted(new Comparator<Integer>() {
		@Override
		public int compare(Integer fId0, Integer fId1) {
			return Double.compare(Math.abs(weights[ArrayUtils.indexOf(features, fId0)]), Math.abs(ArrayUtils.indexOf(features, fId1)));
		}
	}).filter(fId -> weights[ArrayUtils.indexOf(features, fId)] != 0.0).mapToInt(fId -> fId.intValue()).toArray();

	return ftrImportance;
}
 
开发者ID:marcocor,项目名称:smaph,代码行数:23,代码来源:TuneModelLibSvm.java

示例3: trainSvm

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
/**
 * Train SVM model. Return alpha and w matrix.
 * 
 * */
public StoreAlphaWeight trainSvm(File saveModel) throws Exception{
	StoreAlphaWeight saww=new StoreAlphaWeight();
	this.modelFile=saveModel;
	Problem problem=new Problem();
	problem.l=train; 
	problem.n=dimensions;
	problem.x=vectrain;
	problem.y=trainattr;
	SolverType s=SolverType.MCSVM_CS;  
       Parameter parameter = new Parameter(s, C, eps);
       Model modelg = Linear.train(problem, parameter, saww);
       try {
		modelg.save(saveModel);
	} catch (IOException e) {
		// TODO Auto-generated catch block
		e.printStackTrace();
	}
       return saww;
}
 
开发者ID:thunlp,项目名称:MMDW,代码行数:24,代码来源:Evaluate_SVM.java

示例4: train

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
public void train(List<Pair<CounterInterface<Integer>,Integer>> trainSet) {
	Problem problem = new Problem();
	FeatureNode[][] x = new FeatureNode[trainSet.size()][];
	double[] y = new double[trainSet.size()];
	int maxFeature = 0;
	for (int i=0; i<x.length; ++i) {
		CounterInterface<Integer> features = trainSet.get(i).getFirst();
		for (Map.Entry<Integer, Double> feat : features.entries()) {
			maxFeature = Math.max(feat.getKey()+1, maxFeature);
		}
		x[i] = convertToFeatureNodes(features);
		y[i] = trainSet.get(i).getSecond();
	}
	
	problem.l = trainSet.size();
	problem.n = maxFeature;
	problem.x = x;
	problem.y = y;
	problem.bias = 0.0;
	
	Parameter parameter = new Parameter(solverType, C, eps);
	model = Linear.train(problem, parameter);
}
 
开发者ID:tberg12,项目名称:murphy,代码行数:24,代码来源:LibLinearWrapper.java

示例5: train

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
public static void train() throws IOException, InvalidInputDataException{
	String file = "output\\svm/book_svm.svm";
	Problem problem = Problem.readFromFile(new File(file),-1);

	SolverType solver = SolverType.L2R_LR; // -s 0
	double C = 1.0;    // cost of constraints violation
	double eps = 0.01; // stopping criteria

	Parameter parameter = new Parameter(solver, C, eps);
	Model model = Linear.train(problem, parameter);
	File modelFile = new File("output/model");
	model.save(modelFile);
	System.out.println(modelFile.getAbsolutePath());
	// load model or use it directly
	model = Model.load(modelFile);

	Feature[] instance = { new FeatureNode(1, 4), new FeatureNode(2, 2) };
	double prediction = Linear.predict(model, instance);
	System.out.println(prediction);
	int nr_fold = 10;
    double[] target = new double[problem.l];
	Linear.crossValidation(problem, parameter, nr_fold, target);
}
 
开发者ID:laozhaokun,项目名称:sentimentclassify,代码行数:24,代码来源:Main.java

示例6: crossValidate

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
private static Prediction[] crossValidate(Problem prob, Parameter linearParams, int folds) {
	double[] prediction = new double[prob.l];
	Linear.crossValidation(prob, linearParams, folds, prediction);
	Prediction[] pred2 = new Prediction[prob.l];

	for (int i = 0; i < pred2.length; i++) {
		pred2[i] = new Prediction(prediction[i], i);
	}
	return pred2;
}
 
开发者ID:Data2Semantics,项目名称:mustard,代码行数:11,代码来源:LibLINEAR.java

示例7: getParamsCopy

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
public Parameter getParamsCopy() {
	Parameter p2 = new Parameter(params.getSolverType(), params.getC(), params.getEps());
	if (weights != null) {
		p2.setWeights(params.getWeights(), params.getWeightLabels());
	}		
	p2.setEps(params.getEps());
	
	return p2;
}
 
开发者ID:Data2Semantics,项目名称:mustard,代码行数:10,代码来源:LibLINEARParameters.java

示例8: MultiClassSVM

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
/**
 * Maximal feature index, not including the bias feature.
 */
// int max_index;

public MultiClassSVM(double C, double eps) {
	super();
	this.bias = 1;
	this.C = C;
	this.eps = eps;
	features = null;
	parameter = new Parameter(SolverType.MCSVM_CS, C, eps);
	model = null;
}
 
开发者ID:MingjieQian,项目名称:JML,代码行数:15,代码来源:MultiClassSVM.java

示例9: doTrain

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
@Override
public MaxentModel doTrain(DataIndexer indexer) throws IOException {

  List<Double> vy = new ArrayList<Double>();
  List<Feature[]> vx = new ArrayList<Feature[]>();

  // outcomes
  int outcomes[] = indexer.getOutcomeList();

  int max_index = 0;
  
  // For each event ...
  for (int i = 0; i < indexer.getContexts().length; i++) {

    int outcome = outcomes[i];
    vy.add(Double.valueOf(outcome));

    int features[] = indexer.getContexts()[i];

    Feature[] x;
    if (bias >= 0) {
      x = new Feature[features.length + 1];
    } else {
      x = new Feature[features.length];
    }

    // for each feature ...
    for (int fi = 0; fi < features.length; fi++) {
      // TODO: SHOUDL BE indexer.getNumTimesEventsSeen()[i] and not fi !!!
      x[fi] = new FeatureNode(features[fi] + 1, indexer.getNumTimesEventsSeen()[i]);
    } 

    if (features.length > 0) {
      max_index = Math.max(max_index, x[features.length - 1].getIndex());
    }
    
    vx.add(x);
  }

  Problem problem = constructProblem(vy, vx, max_index, bias);
  Parameter parameter = new Parameter(solverType, c, eps, p);
  
  Model liblinearModel = Linear.train(problem, parameter);

  Map<String, Integer> predMap = new HashMap<String, Integer>();
  
  String predLabels[] = indexer.getPredLabels();
  for (int i = 0; i < predLabels.length; i++) {
    predMap.put(predLabels[i], i);
  }
  
  return new LiblinearModel(liblinearModel, indexer.getOutcomeLabels(), predMap);
}
 
开发者ID:apache,项目名称:opennlp-addons,代码行数:54,代码来源:LiblinearTrainer.java

示例10: LibLinearClassifier

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
public LibLinearClassifier() {
	this(new Parameter(SolverType.L2R_LR, 1, 0.1));
}
 
开发者ID:jdmp,项目名称:java-data-mining-package,代码行数:4,代码来源:LibLinearClassifier.java

示例11: Multiclass

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
public Multiclass(SolverType solver, double C, double eps, double bias, boolean dense) {
	parameter = new Parameter(solver, C, eps);
	this.dense = dense;
	this.bias = bias;
}
 
开发者ID:openimaj,项目名称:openimaj,代码行数:6,代码来源:LiblinearAnnotator.java

示例12: Multilabel

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
public Multilabel(SolverType solver, double C, double eps, double bias, boolean dense) {
	parameter = new Parameter(solver, C, eps);
	this.dense = dense;
	this.bias = bias;
}
 
开发者ID:openimaj,项目名称:openimaj,代码行数:6,代码来源:LiblinearAnnotator.java

示例13: LibLINEARParameters

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
public LibLINEARParameters(int algorithm) {
	this.algorithm = algorithm;
	
	switch (algorithm) {
	case SVC_DUAL: 	solver = SolverType.L2R_L2LOSS_SVC_DUAL;
	evalFunction = new Accuracy();
	break;
	case SVC_PRIMAL: solver = SolverType.L2R_L2LOSS_SVC;
	evalFunction = new Accuracy();
	break;
	case SVR_DUAL: solver = SolverType.L2R_L2LOSS_SVR_DUAL;
	evalFunction = new MeanSquaredError();
	break;
	case SVR_PRIMAL: solver = SolverType.L2R_L2LOSS_SVR;
	evalFunction = new MeanSquaredError();
	break;
	case LR_DUAL: solver = SolverType.L2R_LR_DUAL;
	evalFunction = new Accuracy();
	break;
	case LR_PRIMAL: solver = SolverType.L2R_LR;
	evalFunction = new Accuracy();
	break;
	default: solver = SolverType.L2R_L2LOSS_SVC_DUAL;
	evalFunction = new Accuracy();
	break;
	}

	verbose = VERBOSITY_DEFAULT;
	bias = -1;
	doCrossValidation = true;
	doWeightLabels = false;
	numFolds = 5;
	splitFraction = (float) 0.7;
	ps = new double[1];
	ps[0] = 0.1;
	cs = new double[1];
	cs[0] = 1;
	eps = 0.1;
	
	params = new Parameter(solver, cs[0], eps);
}
 
开发者ID:Data2Semantics,项目名称:mustard,代码行数:42,代码来源:LibLINEARParameters.java

示例14: getParams

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
public Parameter getParams() {
	return params;
}
 
开发者ID:Data2Semantics,项目名称:mustard,代码行数:4,代码来源:LibLINEARParameters.java

示例15: LibLinearClassifier

import de.bwaldvogel.liblinear.Parameter; //导入依赖的package包/类
LibLinearClassifier() {

		this.mParameter = new Parameter(SolverType.L2R_L2LOSS_SVC_DUAL, 1, Double.POSITIVE_INFINITY);
	}
 
开发者ID:SI3P,项目名称:supWSD,代码行数:5,代码来源:LibLinearClassifier.java


注:本文中的de.bwaldvogel.liblinear.Parameter类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。