本文整理汇总了Java中com.tdunning.math.stats.AVLTreeDigest类的典型用法代码示例。如果您正苦于以下问题:Java AVLTreeDigest类的具体用法?Java AVLTreeDigest怎么用?Java AVLTreeDigest使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
AVLTreeDigest类属于com.tdunning.math.stats包,在下文中一共展示了AVLTreeDigest类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: read
import com.tdunning.math.stats.AVLTreeDigest; //导入依赖的package包/类
@Override
public void read(Kryo kryo, Input input) {
int digestSize = input.readInt();
byte[] digestBytes = input.readBytes(digestSize);
ByteBuffer digestBuff = ByteBuffer.wrap(digestBytes);
digest = AVLTreeDigest.fromBytes(digestBuff);
n = input.readLong();
sum = input.readDouble();
sumOfSquares = input.readDouble();
sumOfLogs = input.readDouble();
min = input.readDouble();
max = input.readDouble();
M1 = input.readDouble();
M2 = input.readDouble();
M3 = input.readDouble();
M4 = input.readDouble();
}
示例2: addIntermediary
import com.tdunning.math.stats.AVLTreeDigest; //导入依赖的package包/类
@Override
public void addIntermediary(IntermediaryResultValueIterator intermediary) {
Long otherComplete = (Long) intermediary.next();
if (otherComplete == 1L) {
// only add state if we received some state where the other instance was "complete", i.e. this is the final result
// of a single other instance of this function. We will not have to remove this state again (we wouldn't be able
// to anyway).
SerializedAVLTreeDigest serialized = (SerializedAVLTreeDigest) intermediary.next();
AVLTreeDigest other = AVLTreeDigest.fromBytes(ByteBuffer.wrap(serialized.getSerialized()));
tdigest.add(other);
}
}
示例3: peekLength
import com.tdunning.math.stats.AVLTreeDigest; //导入依赖的package包/类
public int peekLength(ByteBuffer in) {
int mark = in.position();
AVLTreeDigest.fromBytes(in);
int total = in.position() - mark;
in.position(mark);
return total;
}
示例4: setup
import com.tdunning.math.stats.AVLTreeDigest; //导入依赖的package包/类
@Override
public void setup() {
ExecutorService pool = Executors.newFixedThreadPool(1);
BlockingQueue<State> q = new ArrayBlockingQueue<>(2000);
input = q;
pool.submit(new Producer(q));
speedDistribution = new AVLTreeDigest(300);
noise = new Random();
speed = new Stripchart(10, 430, 460, 80, 1, 0, 0, 90);
rpm = new Stripchart(10, 520, 460, 80, 1, 0, 0, 2200);
throttle = new Stripchart(10, 610, 460, 80, 1, 0, 0, 100);
frameRate(15);
}
示例5: OnlineStatisticsProvider
import com.tdunning.math.stats.AVLTreeDigest; //导入依赖的package包/类
public OnlineStatisticsProvider() {
digest = new AVLTreeDigest(COMPRESSION);
}
示例6: readRegisters
import com.tdunning.math.stats.AVLTreeDigest; //导入依赖的package包/类
public void readRegisters(ByteBuffer in) {
registers = AVLTreeDigest.fromBytes(in);
compression = registers.compression();
}
示例7: create
import com.tdunning.math.stats.AVLTreeDigest; //导入依赖的package包/类
@Override
TDigest create(double compression) {
return new AVLTreeDigest(compression);
}
示例8: create
import com.tdunning.math.stats.AVLTreeDigest; //导入依赖的package包/类
TDigest create(double compression) {
return new AVLTreeDigest(compression);
}
示例9: testBasics
import com.tdunning.math.stats.AVLTreeDigest; //导入依赖的package包/类
@Test
public void testBasics() throws IOException {
// this sampler has four variables
// g1 is gamma distributed with alpha = 0.2, beta = 0.2
// v1 is unit normal
// v2 is normal with mean = 0, sd = 2
// v3 is gamma-normal with dof=2, mean = 0.
SchemaSampler s = new SchemaSampler(Resources.asCharSource(Resources.getResource("schema015.json"), Charsets.UTF_8).read());
TDigest tdG1 = new AVLTreeDigest(500);
TDigest tdG2 = new AVLTreeDigest(500);
TDigest td1 = new AVLTreeDigest(500);
TDigest td2 = new AVLTreeDigest(500);
TDigest td3 = new AVLTreeDigest(500);
double x1 = 0;
double x2 = 0;
double x3 = 0;
for (int i = 0; i < 1000000; i++) {
JsonNode r = s.sample();
tdG1.add(r.get("g1").asDouble());
tdG2.add(r.get("g2").asDouble());
double step1 = r.get("v1").get("step").asDouble();
td1.add(step1);
x1 += step1;
assertEquals(x1, r.get("v1").get("value").asDouble(), 0);
assertEquals(x1, r.get("v1-bare").asDouble(), 0);
double step2 = r.get("v2").get("step").asDouble();
td2.add(step2);
x2 += step2;
assertEquals(x2, r.get("v2").get("value").asDouble(), 0);
double step3 = r.get("v3").get("step").asDouble();
td3.add(step3);
x3 += step3;
assertEquals(x3, r.get("v3").get("value").asDouble(), 0);
}
// now compare against reference distributions to test accuracy of the observed step distributions
NormalDistribution normalDistribution = new NormalDistribution();
GammaDistribution gd1 = new GammaDistribution(0.2, 5);
GammaDistribution gd2 = new GammaDistribution(1, 1);
TDistribution tDistribution = new TDistribution(2);
for (double q : new double[]{0.001, 0.01, 0.1, 0.2, 0.5, 0.8, 0.9, 0.99, 0.99}) {
double uG1 = gd1.cumulativeProbability(tdG1.quantile(q));
assertEquals(q, uG1, (1 - q) * q * 10e-2);
double uG2 = gd2.cumulativeProbability(tdG2.quantile(q));
assertEquals(q, uG2, (1 - q) * q * 10e-2);
double u1 = normalDistribution.cumulativeProbability(td1.quantile(q));
assertEquals(q, u1, (1 - q) * q * 10e-2);
double u2 = normalDistribution.cumulativeProbability(td2.quantile(q) / 2);
assertEquals(q, u2, (1 - q) * q * 10e-2);
double u3 = tDistribution.cumulativeProbability(td3.quantile(q));
assertEquals(q, u3, (1 - q) * q * 10e-2);
}
}