本文整理汇总了Java中com.rapidminer.tools.math.distribution.kernel.KernelDistribution类的典型用法代码示例。如果您正苦于以下问题:Java KernelDistribution类的具体用法?Java KernelDistribution怎么用?Java KernelDistribution使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
KernelDistribution类属于com.rapidminer.tools.math.distribution.kernel包,在下文中一共展示了KernelDistribution类的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: KernelDistributionModel
import com.rapidminer.tools.math.distribution.kernel.KernelDistribution; //导入依赖的package包/类
public KernelDistributionModel(ExampleSet exampleSet, boolean laplaceCorrectionEnabled, int estimationMode,
int bandwidthSelectionMode, double bandwidth, int numberOfKernels, int gridSize) {
super(exampleSet, ExampleSetUtilities.SetsCompareOption.ALLOW_SUPERSET,
ExampleSetUtilities.TypesCompareOption.ALLOW_SAME_PARENTS);
this.laplaceCorrectionEnabled = laplaceCorrectionEnabled;
this.useApplianceGrid = gridSize > 10;
this.gridSize = gridSize;
Attribute labelAttribute = exampleSet.getAttributes().getLabel();
numberOfClasses = labelAttribute.getMapping().size();
numberOfAttributes = exampleSet.getAttributes().size();
nominal = new boolean[numberOfAttributes];
attributeNames = new String[numberOfAttributes];
attributeValues = new String[numberOfAttributes][];
className = labelAttribute.getName();
classValues = new String[numberOfClasses];
for (int i = 0; i < numberOfClasses; i++) {
classValues[i] = labelAttribute.getMapping().mapIndex(i);
}
int attributeIndex = 0;
weightSums = new double[numberOfAttributes][numberOfClasses][];
distributionProperties = new double[numberOfAttributes][numberOfClasses][];
kernelDistributions = new KernelDistribution[numberOfAttributes][numberOfClasses];
for (Attribute attribute : exampleSet.getAttributes()) {
attributeNames[attributeIndex] = attribute.getName();
if (attribute.isNominal()) {
nominal[attributeIndex] = true;
int mappingSize = attribute.getMapping().size() + 1;
attributeValues[attributeIndex] = new String[mappingSize];
for (int i = 0; i < mappingSize - 1; i++) {
attributeValues[attributeIndex][i] = attribute.getMapping().mapIndex(i);
}
attributeValues[attributeIndex][mappingSize - 1] = UNKNOWN_VALUE_NAME;
for (int i = 0; i < numberOfClasses; i++) {
weightSums[attributeIndex][i] = new double[mappingSize];
distributionProperties[attributeIndex][i] = new double[mappingSize];
}
} else {
nominal[attributeIndex] = false;
for (int i = 0; i < numberOfClasses; i++) {
switch (estimationMode) {
case KernelNaiveBayes.ESTIMATION_MODE_FULL:
switch (bandwidthSelectionMode) {
case KernelNaiveBayes.BANDWIDTH_SELECTION_MODE_HEURISTIC:
kernelDistributions[attributeIndex][i] = new FullKernelDistribution();
break;
case KernelNaiveBayes.BANDWIDTH_SELECTION_MODE_FIX:
kernelDistributions[attributeIndex][i] = new FullKernelDistribution(bandwidth);
break;
}
break;
case KernelNaiveBayes.ESTIMATION_MODE_GREEDY:
kernelDistributions[attributeIndex][i] = new GreedyKernelDistribution(bandwidth, numberOfKernels);
break;
default:
kernelDistributions[attributeIndex][i] = new FullKernelDistribution();
}
}
}
attributeIndex++;
}
// initialization of total and a priori weight counters
totalWeight = 0.0d;
classWeights = new double[numberOfClasses];
priors = new double[numberOfClasses];
if (useApplianceGrid) {
grid = new double[numberOfAttributes][numberOfClasses][];
}
// update the model
update(exampleSet);
// calculate the probabilities
updateDistributionProperties();
}
示例2: KernelDistributionModel
import com.rapidminer.tools.math.distribution.kernel.KernelDistribution; //导入依赖的package包/类
public KernelDistributionModel(ExampleSet exampleSet, boolean laplaceCorrectionEnabled, int estimationMode,
int bandwidthSelectionMode, double bandwidth, int numberOfKernels, int gridSize) {
super(exampleSet, ExampleSetUtilities.SetsCompareOption.ALLOW_SUPERSET,
ExampleSetUtilities.TypesCompareOption.ALLOW_SAME_PARENTS);
this.laplaceCorrectionEnabled = laplaceCorrectionEnabled;
this.useApplianceGrid = gridSize > 10;
this.gridSize = gridSize;
Attribute labelAttribute = exampleSet.getAttributes().getLabel();
numberOfClasses = labelAttribute.getMapping().size();
numberOfAttributes = exampleSet.getAttributes().size();
nominal = new boolean[numberOfAttributes];
attributeNames = new String[numberOfAttributes];
attributeValues = new String[numberOfAttributes][];
className = labelAttribute.getName();
classValues = new String[numberOfClasses];
for (int i = 0; i < numberOfClasses; i++) {
classValues[i] = labelAttribute.getMapping().mapIndex(i);
}
int attributeIndex = 0;
weightSums = new double[numberOfAttributes][numberOfClasses][];
distributionProperties = new double[numberOfAttributes][numberOfClasses][];
kernelDistributions = new KernelDistribution[numberOfAttributes][numberOfClasses];
for (Attribute attribute : exampleSet.getAttributes()) {
attributeNames[attributeIndex] = attribute.getName();
if (attribute.isNominal()) {
nominal[attributeIndex] = true;
int mappingSize = attribute.getMapping().size() + 1;
attributeValues[attributeIndex] = new String[mappingSize];
for (int i = 0; i < mappingSize - 1; i++) {
attributeValues[attributeIndex][i] = attribute.getMapping().mapIndex(i);
}
attributeValues[attributeIndex][mappingSize - 1] = UNKNOWN_VALUE_NAME;
for (int i = 0; i < numberOfClasses; i++) {
weightSums[attributeIndex][i] = new double[mappingSize];
distributionProperties[attributeIndex][i] = new double[mappingSize];
}
} else {
nominal[attributeIndex] = false;
for (int i = 0; i < numberOfClasses; i++) {
switch (estimationMode) {
case KernelNaiveBayes.ESTIMATION_MODE_FULL:
switch (bandwidthSelectionMode) {
case KernelNaiveBayes.BANDWIDTH_SELECTION_MODE_HEURISTIC:
kernelDistributions[attributeIndex][i] = new FullKernelDistribution();
break;
case KernelNaiveBayes.BANDWIDTH_SELECTION_MODE_FIX:
kernelDistributions[attributeIndex][i] = new FullKernelDistribution(bandwidth);
break;
}
break;
case KernelNaiveBayes.ESTIMATION_MODE_GREEDY:
kernelDistributions[attributeIndex][i] = new GreedyKernelDistribution(bandwidth,
numberOfKernels);
break;
default:
kernelDistributions[attributeIndex][i] = new FullKernelDistribution();
}
}
}
attributeIndex++;
}
// initialization of total and a priori weight counters
totalWeight = 0.0d;
classWeights = new double[numberOfClasses];
priors = new double[numberOfClasses];
if (useApplianceGrid) {
grid = new double[numberOfAttributes][numberOfClasses][];
}
// update the model
update(exampleSet);
// calculate the probabilities
updateDistributionProperties();
}
示例3: KernelDistributionModel
import com.rapidminer.tools.math.distribution.kernel.KernelDistribution; //导入依赖的package包/类
public KernelDistributionModel(ExampleSet exampleSet, boolean laplaceCorrectionEnabled, int estimationMode, int bandwidthSelectionMode, double bandwidth, int numberOfKernels, int gridSize) {
super(exampleSet);
this.laplaceCorrectionEnabled = laplaceCorrectionEnabled;
this.useApplianceGrid = (gridSize > 10);
this.gridSize = gridSize;
Attribute labelAttribute = exampleSet.getAttributes().getLabel();
numberOfClasses = labelAttribute.getMapping().size();
numberOfAttributes = exampleSet.getAttributes().size();
nominal = new boolean[numberOfAttributes];
attributeNames = new String[numberOfAttributes];
attributeValues = new String[numberOfAttributes][];
className = labelAttribute.getName();
classValues = new String[numberOfClasses];
for (int i = 0; i < numberOfClasses; i++) {
classValues[i] = labelAttribute.getMapping().mapIndex(i);
}
int attributeIndex = 0;
weightSums = new double[numberOfAttributes][numberOfClasses][];
distributionProperties = new double[numberOfAttributes][numberOfClasses][];
kernelDistributions = new KernelDistribution[numberOfAttributes][numberOfClasses];
for (Attribute attribute : exampleSet.getAttributes()) {
attributeNames[attributeIndex] = attribute.getName();
if (attribute.isNominal()) {
nominal[attributeIndex] = true;
int mappingSize = attribute.getMapping().size() + 1;
attributeValues[attributeIndex] = new String[mappingSize];
for (int i = 0; i < mappingSize - 1; i++) {
attributeValues[attributeIndex][i] = attribute.getMapping().mapIndex(i);
}
attributeValues[attributeIndex][mappingSize - 1] = UNKNOWN_VALUE_NAME;
for (int i = 0; i < numberOfClasses; i++) {
weightSums[attributeIndex][i] = new double[mappingSize];
distributionProperties[attributeIndex][i] = new double[mappingSize];
}
} else {
nominal[attributeIndex] = false;
for (int i = 0; i < numberOfClasses; i++) {
switch (estimationMode) {
case KernelNaiveBayes.ESTIMATION_MODE_FULL:
switch (bandwidthSelectionMode) {
case KernelNaiveBayes.BANDWIDTH_SELECTION_MODE_HEURISTIC:
kernelDistributions[attributeIndex][i] = new FullKernelDistribution();
break;
case KernelNaiveBayes.BANDWIDTH_SELECTION_MODE_FIX:
kernelDistributions[attributeIndex][i] = new FullKernelDistribution(bandwidth);
break;
}
break;
case KernelNaiveBayes.ESTIMATION_MODE_GREEDY:
kernelDistributions[attributeIndex][i] = new GreedyKernelDistribution(bandwidth, numberOfKernels);
break;
default:
kernelDistributions[attributeIndex][i] = new FullKernelDistribution();
}
}
}
attributeIndex++;
}
// initialization of total and a priori weight counters
totalWeight = 0.0d;
classWeights = new double[numberOfClasses];
priors = new double[numberOfClasses];
if (useApplianceGrid) {
grid = new double[numberOfAttributes][numberOfClasses][];
}
// update the model
update(exampleSet);
// calculate the probabilities
updateDistributionProperties();
}