当前位置: 首页>>代码示例>>Java>>正文


Java KernelDot类代码示例

本文整理汇总了Java中com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelDot的典型用法代码示例。如果您正苦于以下问题:Java KernelDot类的具体用法?Java KernelDot怎么用?Java KernelDot使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


KernelDot类属于com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel包,在下文中一共展示了KernelDot类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: learn

import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelDot; //导入依赖的package包/类
@Override
public Model learn(ExampleSet exampleSet) throws OperatorException {
	Attribute label = exampleSet.getAttributes().getLabel();
	if ((label.isNominal()) && (label.getMapping().size() != 2)) {
		throw new UserError(this, 114, getName(), label.getName());
	}
	this.svmExamples = new com.rapidminer.operator.learner.functions.kernel.jmysvm.examples.SVMExamples(exampleSet,
			label, getParameterAsBoolean(PARAMETER_SCALE));

	// kernel
	int cacheSize = getParameterAsInt(PARAMETER_KERNEL_CACHE);
	Kernel kernel = new KernelDot();
	kernel.init(svmExamples, cacheSize);

	// SVM
	SVMInterface svm = createSVM(label, kernel, svmExamples, exampleSet);
	svm.init(kernel, svmExamples);
	svm.train();

	LinearMySVMModel model = new LinearMySVMModel(exampleSet, svmExamples, kernel, KERNEL_DOT);
	this.svmExamples = null;
	return model;
}
 
开发者ID:transwarpio,项目名称:rapidminer,代码行数:24,代码来源:LinearMySVMLearner.java

示例2: createKernel

import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelDot; //导入依赖的package包/类
/**
 * Creates a new kernel of the given type. The kernel type has to be one out of KERNEL_DOT,
 * KERNEL_RADIAL, KERNEL_POLYNOMIAL, KERNEL_NEURAL, KERNEL_EPANECHNIKOV,
 * KERNEL_GAUSSIAN_COMBINATION, or KERNEL_MULTIQUADRIC.
 */
public static Kernel createKernel(int kernelType) {
	switch (kernelType) {
		case KERNEL_DOT:
			return new KernelDot();
		case KERNEL_RADIAL:
			return new KernelRadial();
		case KERNEL_POLYNOMIAL:
			return new KernelPolynomial();
		case KERNEL_NEURAL:
			return new KernelNeural();
		case KERNEL_ANOVA:
			return new KernelAnova();
		case KERNEL_EPANECHNIKOV:
			return new KernelEpanechnikov();
		case KERNEL_GAUSSIAN_COMBINATION:
			return new KernelGaussianCombination();
		case KERNEL_MULTIQUADRIC:
			return new KernelMultiquadric();
		default:
			return new KernelDot();
	}
}
 
开发者ID:transwarpio,项目名称:rapidminer,代码行数:28,代码来源:AbstractMySVMLearner.java

示例3: learn

import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelDot; //导入依赖的package包/类
@Override
public Model learn(ExampleSet exampleSet) throws OperatorException {
    Attribute label = exampleSet.getAttributes().getLabel();
    if ((label.isNominal()) && (label.getMapping().size() != 2)) {
        throw new UserError(this, 114, getName(), label.getName());
    }
    this.svmExamples = new com.rapidminer.operator.learner.functions.kernel.jmysvm.examples.SVMExamples(exampleSet, label, getParameterAsBoolean(PARAMETER_SCALE));

    // kernel
    int cacheSize = getParameterAsInt(PARAMETER_KERNEL_CACHE);
    Kernel kernel = new KernelDot();
    kernel.init(svmExamples, cacheSize);

    // SVM
    SVMInterface svm = createSVM(label, kernel, svmExamples, exampleSet);
    svm.init(kernel, svmExamples);
    svm.train();

    LinearMySVMModel model = new LinearMySVMModel(exampleSet, svmExamples, kernel, KERNEL_DOT);
    this.svmExamples = null;
    return model;
}
 
开发者ID:rapidminer,项目名称:rapidminer-5,代码行数:23,代码来源:LinearMySVMLearner.java

示例4: createKernel

import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelDot; //导入依赖的package包/类
/**
 * Creates a new kernel of the given type. The kernel type has to be one out
 * of KERNEL_DOT, KERNEL_RADIAL, KERNEL_POLYNOMIAL, KERNEL_NEURAL, 
 * KERNEL_EPANECHNIKOV, KERNEL_GAUSSIAN_COMBINATION, or KERNEL_MULTIQUADRIC.
 */
public static Kernel createKernel(int kernelType) {
	switch (kernelType) {
	case KERNEL_DOT:
		return new KernelDot();
	case KERNEL_RADIAL:
		return new KernelRadial();
	case KERNEL_POLYNOMIAL:
		return new KernelPolynomial();
	case KERNEL_NEURAL:
		return new KernelNeural();
	case KERNEL_ANOVA:
		return new KernelAnova();
	case KERNEL_EPANECHNIKOV:
		return new KernelEpanechnikov();
	case KERNEL_GAUSSIAN_COMBINATION:
		return new KernelGaussianCombination();
	case KERNEL_MULTIQUADRIC:
		return new KernelMultiquadric();
	default:
		return new KernelDot();
	}
}
 
开发者ID:rapidminer,项目名称:rapidminer-5,代码行数:28,代码来源:AbstractMySVMLearner.java

示例5: createKernel

import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelDot; //导入依赖的package包/类
/**
 * Creates a new kernel of the given type. The kernel type has to be one out of KERNEL_DOT,
 * KERNEL_RADIAL, KERNEL_POLYNOMIAL, or KERNEL_NEURAL.
 */
public static Kernel createKernel(int kernelType) {
	switch (kernelType) {
		case KERNEL_RADIAL:
			return new KernelRadial();
		case KERNEL_POLYNOMIAL:
			return new KernelPolynomial();
		case KERNEL_NEURAL:
			return new KernelNeural();
		default:
			return new KernelDot();
	}
}
 
开发者ID:transwarpio,项目名称:rapidminer,代码行数:17,代码来源:SVClustering.java

示例6: createKernel

import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelDot; //导入依赖的package包/类
/**
 * Creates a new kernel of the given type. The kernel type has to be one out of KERNEL_DOT, KERNEL_RADIAL, KERNEL_POLYNOMIAL, or KERNEL_NEURAL.
 */
public static Kernel createKernel(int kernelType) {
	switch (kernelType) {
	case KERNEL_RADIAL:
		return new KernelRadial();
	case KERNEL_POLYNOMIAL:
		return new KernelPolynomial();
	case KERNEL_NEURAL:
		return new KernelNeural();
	default:
		return new KernelDot();
	}
}
 
开发者ID:rapidminer,项目名称:rapidminer-5,代码行数:16,代码来源:SVClustering.java

示例7: performPrediction

import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelDot; //导入依赖的package包/类
@Override
public ExampleSet performPrediction(ExampleSet exampleSet, Attribute predictedLabelAttribute) throws OperatorException {
	if (kernel instanceof KernelDot) {
		if (weights != null) {
			Map<Integer, MeanVariance> meanVariances = model.getMeanVariances();
			for (Example example : exampleSet) {
				double prediction = getBias();
				int a = 0;
				for (Attribute attribute : exampleSet.getAttributes()) {
					double value = example.getValue(attribute);
					MeanVariance meanVariance = meanVariances.get(a);
					if (meanVariance != null) {
						if (meanVariance.getVariance() == 0.0d) {
							value = 0.0d;
						} else {
							value = (value - meanVariance.getMean()) / Math.sqrt(meanVariance.getVariance());
						}
					}
					prediction += weights[a] * value;
					a++;
				}
				setPrediction(example, prediction);
			}
			return exampleSet;
		}
	}

	// only if not simple dot hyperplane (see above)...
	com.rapidminer.operator.learner.functions.kernel.jmysvm.examples.SVMExamples toPredict = new com.rapidminer.operator.learner.functions.kernel.jmysvm.examples.SVMExamples(
			exampleSet, exampleSet.getAttributes().getPredictedLabel(), model.getMeanVariances());

	SVMInterface svm = createSVM();
	svm.init(kernel, model);
	svm.predict(toPredict);

	// set predictions from toPredict
	Iterator<Example> reader = exampleSet.iterator();
	int k = 0;
	while (reader.hasNext()) {
		setPrediction(reader.next(), toPredict.get_y(k++));
	}
	return exampleSet;
}
 
开发者ID:transwarpio,项目名称:rapidminer,代码行数:44,代码来源:AbstractMySVMModel.java

示例8: performPrediction

import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelDot; //导入依赖的package包/类
@Override
public ExampleSet performPrediction(ExampleSet exampleSet, Attribute predictedLabelAttribute) throws OperatorException {
	if (kernel instanceof KernelDot) {
		if (weights != null) {
			Map<Integer, MeanVariance> meanVariances = model.getMeanVariances();
			OperatorProgress progress = null;
			if (getShowProgress() && getOperator() != null && getOperator().getProgress() != null) {
				progress = getOperator().getProgress();
				progress.setTotal(exampleSet.size());
			}
			int progressCounter = 0;
			Attribute[] regularAttributes = exampleSet.getAttributes().createRegularAttributeArray();
			for (Example example : exampleSet) {
				double prediction = getBias();
				int a = 0;
				for (Attribute attribute : regularAttributes) {
					double value = example.getValue(attribute);
					MeanVariance meanVariance = meanVariances.get(a);
					if (meanVariance != null) {
						if (meanVariance.getVariance() == 0.0d) {
							value = 0.0d;
						} else {
							value = (value - meanVariance.getMean()) / Math.sqrt(meanVariance.getVariance());
						}
					}
					prediction += weights[a] * value;
					a++;
				}
				setPrediction(example, prediction);

				if (progress != null && ++progressCounter % OPERATOR_PROGRESS_STEPS == 0) {
					progress.setCompleted(progressCounter);
				}
			}
			return exampleSet;
		}
	}

	// only if not simple dot hyperplane (see above)...
	com.rapidminer.operator.learner.functions.kernel.jmysvm.examples.SVMExamples toPredict = new com.rapidminer.operator.learner.functions.kernel.jmysvm.examples.SVMExamples(
			exampleSet, exampleSet.getAttributes().getPredictedLabel(), model.getMeanVariances());

	SVMInterface svm = createSVM();
	svm.init(kernel, model);
	svm.predict(toPredict);

	// set predictions from toPredict
	Iterator<Example> reader = exampleSet.iterator();
	int k = 0;
	while (reader.hasNext()) {
		setPrediction(reader.next(), toPredict.get_y(k++));
	}
	return exampleSet;
}
 
开发者ID:rapidminer,项目名称:rapidminer-studio,代码行数:55,代码来源:AbstractMySVMModel.java

示例9: performPrediction

import com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelDot; //导入依赖的package包/类
@Override
public ExampleSet performPrediction(ExampleSet exampleSet, Attribute predictedLabelAttribute) throws OperatorException {
	if (kernel instanceof KernelDot) {
		if (weights != null) {
			Map<Integer, MeanVariance> meanVariances = model.getMeanVariances();
			for (Example example : exampleSet) {
				double prediction = getBias();
				int a = 0;
				for (Attribute attribute : exampleSet.getAttributes()) {
					double value = example.getValue(attribute);
					MeanVariance meanVariance = meanVariances.get(a);
					if (meanVariance != null) {
						if (meanVariance.getVariance() == 0.0d)
							value = 0.0d;
						else
							value = (value - meanVariance.getMean()) / Math.sqrt(meanVariance.getVariance());
					}
					prediction += weights[a] * value;
					a++;
				}
				setPrediction(example, prediction);
			}
			return exampleSet;
		}
	}
	
	// only if not simple dot hyperplane (see above)...
	com.rapidminer.operator.learner.functions.kernel.jmysvm.examples.SVMExamples toPredict = new com.rapidminer.operator.learner.functions.kernel.jmysvm.examples.SVMExamples(exampleSet, exampleSet.getAttributes().getPredictedLabel(), model.getMeanVariances());

	SVMInterface svm = createSVM();
	svm.init(kernel, model);
	svm.predict(toPredict);

	// set predictions from toPredict
	Iterator<Example> reader = exampleSet.iterator();
	int k = 0;
	while (reader.hasNext()) {
		setPrediction(reader.next(), toPredict.get_y(k++));
	}
	return exampleSet;
}
 
开发者ID:rapidminer,项目名称:rapidminer-5,代码行数:42,代码来源:AbstractMySVMModel.java


注:本文中的com.rapidminer.operator.learner.functions.kernel.jmysvm.kernel.KernelDot类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。