当前位置: 首页>>代码示例>>Java>>正文


Java TypeDescriptor类代码示例

本文整理汇总了Java中com.google.cloud.dataflow.sdk.values.TypeDescriptor的典型用法代码示例。如果您正苦于以下问题:Java TypeDescriptor类的具体用法?Java TypeDescriptor怎么用?Java TypeDescriptor使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


TypeDescriptor类属于com.google.cloud.dataflow.sdk.values包,在下文中一共展示了TypeDescriptor类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: loadArtistCreditsByKey

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
@org.junit.Test
public void loadArtistCreditsByKey() {
  DirectPipeline p = DirectPipeline.createForTest();
  Long artistCreditIds[] = {634509L, 846332L};
  PCollection<String> text = p.apply(Create.of(artistCreditLinesOfJson)).setCoder(StringUtf8Coder.of());
  PCollection<KV<Long, MusicBrainzDataObject>> artistCredits = MusicBrainzTransforms.loadTableFromText(text, "artist_credit_name", "artist_credit");
  PCollection<Long> artistCreditIdPCollection =
      artistCredits.apply(MapElements.via((KV<Long, MusicBrainzDataObject> kv) -> {
            Long k = kv.getKey();
            return k;
          })
              .withOutputType(new TypeDescriptor<Long>() {
              })
      );
  DataflowAssert.that(artistCreditIdPCollection).containsInAnyOrder(634509L, 846332L);
}
 
开发者ID:GoogleCloudPlatform,项目名称:bigquery-etl-dataflow-sample,代码行数:17,代码来源:MusicBrainzTransformsTest.java

示例2: loadArtistsWithMapping

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
@org.junit.Test
public void loadArtistsWithMapping() {

  DirectPipeline p = DirectPipeline.createForTest();

  PCollection<String> artistText = p.apply("artist", Create.of(artistLinesOfJson)).setCoder(StringUtf8Coder.of());
  Map<String, PCollectionView<Map<Long, String>>> maps = new HashMap<>();
  PCollection<String> areaMapText = p.apply("area", Create.of(areaLinesOfJson)).setCoder(StringUtf8Coder.of());
  PCollectionView<Map<Long, String>> areamap = MusicBrainzTransforms.loadMapFromText(areaMapText, "id", "area");
  maps.put("area", areamap);
  PCollection<KV<Long, MusicBrainzDataObject>> loadedArtists = MusicBrainzTransforms.loadTableFromText(artistText, "artist", "id", maps);

  PCollection<String> areas = loadedArtists.apply("areaLabels", MapElements.via((KV<Long, MusicBrainzDataObject> row) -> {
    return (String) row.getValue().getColumnValue("area");
  }).withOutputType(new TypeDescriptor<String>() {
  }));

  DataflowAssert.that(areas).satisfies((areaLabels) -> {
    List<String> theList = new ArrayList<>();
    areaLabels.forEach(theList::add);
    assert (theList.contains("Canada"));
    return null;
  });


}
 
开发者ID:GoogleCloudPlatform,项目名称:bigquery-etl-dataflow-sample,代码行数:27,代码来源:MusicBrainzTransformsTest.java

示例3: apply

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
@Override
public PCollection<KV<String, Integer>> apply(PCollection<GameEvent> gameEvents) {
  return gameEvents
      .apply(
          MapElements.via((GameEvent event) -> KV.of(event.getKey(field), event.getScore()))
              .withOutputType(new TypeDescriptor<KV<String, Integer>>() {}))
      .apply(Sum.<String>integersPerKey());
}
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:9,代码来源:Exercise1.java

示例4: main

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
public static void main(String[] args) {
  CustomPipelineOptions options =
      PipelineOptionsFactory.fromArgs(args).withValidation().as(CustomPipelineOptions.class);
  Pipeline p = Pipeline.create(options);

  p.apply(PubsubIO.Read.named("read from PubSub")
      .topic(String.format("projects/%s/topics/%s", options.getSourceProject(), options.getSourceTopic()))
      .timestampLabel("ts")
      .withCoder(TableRowJsonCoder.of()))

   .apply("window 1s", Window.into(FixedWindows.of(Duration.standardSeconds(1))))

   .apply("parse timestamps",
      MapElements.via(
        (TableRow e) ->
          Instant.from(DateTimeFormatter.ISO_DATE_TIME.parse(e.get("timestamp").toString())).toEpochMilli())
      .withOutputType(TypeDescriptor.of(Long.class)))

   .apply("max timestamp in window", Max.longsGlobally().withoutDefaults())

   .apply("transform",
      MapElements.via(
        (Long t) -> {
          TableRow ride = new TableRow();
          ride.set("timestamp", Instant.ofEpochMilli(t).toString());
          return ride;
        })
      .withOutputType(TypeDescriptor.of(TableRow.class)))

   .apply(PubsubIO.Write.named("write to PubSub")
      .topic(String.format("projects/%s/topics/%s", options.getSinkProject(), options.getSinkTopic()))
      .withCoder(TableRowJsonCoder.of()));
  p.run();
}
 
开发者ID:googlecodelabs,项目名称:cloud-dataflow-nyc-taxi-tycoon,代码行数:35,代码来源:TimestampRides.java

示例5: main

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
public static void main(String[] args) {
  CustomPipelineOptions options =
      PipelineOptionsFactory.fromArgs(args).withValidation().as(CustomPipelineOptions.class);
  Pipeline p = Pipeline.create(options);

  p.apply(PubsubIO.Read.named("read from PubSub")
      .topic(String.format("projects/%s/topics/%s", options.getSourceProject(), options.getSourceTopic()))
      .timestampLabel("ts")
      .withCoder(TableRowJsonCoder.of()))

   .apply("extract dollars",
      MapElements.via((TableRow x) -> Double.parseDouble(x.get("meter_increment").toString()))
        .withOutputType(TypeDescriptor.of(Double.class)))

   .apply("fixed window", Window.into(FixedWindows.of(Duration.standardMinutes(1))))
   .apply("trigger",
      Window.<Double>triggering(
        AfterWatermark.pastEndOfWindow()
          .withEarlyFirings(AfterProcessingTime.pastFirstElementInPane().plusDelayOf(Duration.standardSeconds(1)))
          .withLateFirings(AfterPane.elementCountAtLeast(1)))
        .accumulatingFiredPanes()
        .withAllowedLateness(Duration.standardMinutes(5)))

   .apply("sum whole window", Sum.doublesGlobally().withoutDefaults())
   .apply("format rides", ParDo.of(new TransformRides()))

   .apply(PubsubIO.Write.named("WriteToPubsub")
      .topic(String.format("projects/%s/topics/%s", options.getSinkProject(), options.getSinkTopic()))
      .withCoder(TableRowJsonCoder.of()));
  p.run();
}
 
开发者ID:googlecodelabs,项目名称:cloud-dataflow-nyc-taxi-tycoon,代码行数:32,代码来源:ExactDollarRides.java

示例6: main

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
public static void main(String[] args) {
  CustomPipelineOptions options =
      PipelineOptionsFactory.fromArgs(args).withValidation().as(CustomPipelineOptions.class);
  Pipeline p = Pipeline.create(options);

  p.apply(PubsubIO.Read.named("read from PubSub")
      .topic(String.format("projects/%s/topics/%s", options.getSourceProject(), options.getSourceTopic()))
      .timestampLabel("ts")
      .withCoder(TableRowJsonCoder.of()))

   .apply("key rides by rideid",
      MapElements.via((TableRow ride) -> KV.of(ride.get("ride_id").toString(), ride))
        .withOutputType(new TypeDescriptor<KV<String, TableRow>>() {}))

   .apply("session windows on rides with early firings",
      Window.<KV<String, TableRow>>into(
        Sessions.withGapDuration(Duration.standardMinutes(60)))
          .triggering(
            AfterWatermark.pastEndOfWindow()
              .withEarlyFirings(AfterProcessingTime.pastFirstElementInPane().plusDelayOf(Duration.millis(2000))))
          .accumulatingFiredPanes()
          .withAllowedLateness(Duration.ZERO))

   .apply("group ride points on same ride", Combine.perKey(new LatestPointCombine()))

   .apply("discard key",
      MapElements.via((KV<String, TableRow> a) -> a.getValue())
        .withOutputType(TypeDescriptor.of(TableRow.class)))

   .apply(PubsubIO.Write.named("WriteToPubsub")
      .topic(String.format("projects/%s/topics/%s", options.getSinkProject(), options.getSinkTopic()))
      .withCoder(TableRowJsonCoder.of()));
  p.run();
}
 
开发者ID:googlecodelabs,项目名称:cloud-dataflow-nyc-taxi-tycoon,代码行数:35,代码来源:LatestRides.java

示例7: joinArtistCreditsWithRecordings

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
@org.junit.Test
public void joinArtistCreditsWithRecordings() {

  DirectPipeline p = DirectPipeline.createForTest();

  PCollection<String> artistCreditText = p.apply("artistCredits", Create.of(artistCreditLinesOfJson)).setCoder(StringUtf8Coder.of());
  PCollection<KV<Long, MusicBrainzDataObject>> artistCredits = MusicBrainzTransforms.loadTableFromText(artistCreditText, "artist_credit_name", "artist_credit");

  PCollection<String> recordingText = p.apply("recordings", Create.of(recordingLinesOfJson)).setCoder(StringUtf8Coder.of());
  PCollection<KV<Long, MusicBrainzDataObject>> recordings = MusicBrainzTransforms.loadTableFromText(recordingText, "recording", "artist_credit");

  PCollection<MusicBrainzDataObject> joinedRecordings = MusicBrainzTransforms.innerJoin("artist credits with recordings", artistCredits, recordings);

  PCollection<Long> recordingIds = joinedRecordings.apply(MapElements.via((MusicBrainzDataObject mbo) -> (Long) mbo.getColumnValue("recording_id")).
      withOutputType(new TypeDescriptor<Long>() {
      }));

  Long bieberRecording = 17069165L;
  Long bieberRecording2 = 15508507L;


  DataflowAssert.that(recordingIds).satisfies((longs) -> {
    List<Long> theList = new ArrayList<Long>();
    longs.forEach(theList::add);
    assert (theList.contains(bieberRecording));
    assert (theList.contains(bieberRecording2));
    return null;
  });

  PCollection<Long> numberJoined = joinedRecordings.apply("count joined recrodings", Count.globally());
  PCollection<Long> numberOfArtistCredits = artistCredits.apply("count artist credits", Count.globally());

  DirectPipelineRunner.EvaluationResults results = p.run();

  long joinedRecordingsCount = results.getPCollection(numberJoined).get(0);
  assert (448 == joinedRecordingsCount);
}
 
开发者ID:GoogleCloudPlatform,项目名称:bigquery-etl-dataflow-sample,代码行数:38,代码来源:MusicBrainzTransformsTest.java

示例8: getCoder

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
private Coder<?> getCoder(Combine.CombineFn<?, ?, ?> combiner) {
  try {
    if (combiner.getClass() == Sum.SumIntegerFn.class) {
      return getCoderRegistry().getDefaultCoder(TypeDescriptor.of(Integer.class));
    } else if (combiner.getClass() == Sum.SumLongFn.class) {
      return getCoderRegistry().getDefaultCoder(TypeDescriptor.of(Long.class));
    } else if (combiner.getClass() == Sum.SumDoubleFn.class) {
      return getCoderRegistry().getDefaultCoder(TypeDescriptor.of(Double.class));
    } else if (combiner.getClass() == Min.MinIntegerFn.class) {
      return getCoderRegistry().getDefaultCoder(TypeDescriptor.of(Integer.class));
    } else if (combiner.getClass() == Min.MinLongFn.class) {
      return getCoderRegistry().getDefaultCoder(TypeDescriptor.of(Long.class));
    } else if (combiner.getClass() == Min.MinDoubleFn.class) {
      return getCoderRegistry().getDefaultCoder(TypeDescriptor.of(Double.class));
    } else if (combiner.getClass() == Max.MaxIntegerFn.class) {
      return getCoderRegistry().getDefaultCoder(TypeDescriptor.of(Integer.class));
    } else if (combiner.getClass() == Max.MaxLongFn.class) {
      return getCoderRegistry().getDefaultCoder(TypeDescriptor.of(Long.class));
    } else if (combiner.getClass() == Max.MaxDoubleFn.class) {
      return getCoderRegistry().getDefaultCoder(TypeDescriptor.of(Double.class));
    } else {
      throw new IllegalArgumentException("unsupported combiner in Aggregator: "
          + combiner.getClass().getName());
    }
  } catch (CannotProvideCoderException e) {
    throw new IllegalStateException("Could not determine default coder for combiner", e);
  }
}
 
开发者ID:shakamunyi,项目名称:spark-dataflow,代码行数:29,代码来源:SparkRuntimeContext.java

示例9: main

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

    Exercise6Options options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise6Options.class);
    // Enforce that this pipeline is always run in streaming mode.
    options.setStreaming(true);
    // Allow the pipeline to be cancelled automatically.
    options.setRunner(DataflowPipelineRunner.class);
    Pipeline pipeline = Pipeline.create(options);

    TableReference sessionsTable = new TableReference();
    sessionsTable.setDatasetId(options.getOutputDataset());
    sessionsTable.setProjectId(options.getProject());
    sessionsTable.setTableId(options.getOutputTableName());

    PCollection<GameEvent> rawEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

    // Extract username/score pairs from the event stream
    PCollection<KV<String, Integer>> userEvents =
        rawEvents.apply(
            "ExtractUserScore",
            MapElements.via((GameEvent gInfo) -> KV.of(gInfo.getUser(), gInfo.getScore()))
                .withOutputType(new TypeDescriptor<KV<String, Integer>>() {}));

    // [START EXERCISE 6]:
    // Detect user sessions-- that is, a burst of activity separated by a gap from further
    // activity. Find and record the mean session lengths.
    // This information could help the game designers track the changing user engagement
    // as their set of games changes.
    userEvents
        // Window the user events into sessions with gap options.getSessionGap() minutes. Make sure
        // to use an outputTimeFn that sets the output timestamp to the end of the window. This will
        // allow us to compute means on sessions based on their end times, rather than their start
        // times.
        .apply(
            /* TODO: YOUR CODE GOES HERE */
            new ChangeMe<PCollection<KV<String, Integer>>, KV<String, Integer>>())
        // For this use, we care only about the existence of the session, not any particular
        // information aggregated over it, so the following is an efficient way to do that.
        .apply(Combine.perKey(x -> 0))
        // Get the duration per session.
        .apply("UserSessionActivity", ParDo.of(new UserSessionInfoFn()))
        // Re-window to process groups of session sums according to when the sessions complete.
        // In streaming we don't just ask "what is the mean value" we must ask "what is the mean
        // value for some window of time". To compute periodic means of session durations, we
        // re-window the session durations.
        .apply(
            /* TODO: YOUR CODE GOES HERE */
            new ChangeMe<PCollection<Integer>, Integer>())
        // Find the mean session duration in each window.
        .apply(Mean.<Integer>globally().withoutDefaults())
        // Write this info to a BigQuery table.
        .apply(ParDo.named("FormatSessions").of(new FormatSessionWindowFn()))
        .apply(
            BigQueryIO.Write.to(sessionsTable)
                .withSchema(FormatSessionWindowFn.getSchema())
                .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
                .withWriteDisposition(WriteDisposition.WRITE_APPEND));
    // [END EXERCISE 6]:

    // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
    // command line.
    PipelineResult result = pipeline.run();
  }
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:65,代码来源:Exercise6.java

示例10: main

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
  Exercise7Options options =
      PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise7Options.class);
  // Enforce that this pipeline is always run in streaming mode.
  options.setStreaming(true);
  // Allow the pipeline to be cancelled automatically.
  options.setRunner(DataflowPipelineRunner.class);
  Pipeline pipeline = Pipeline.create(options);

  TableReference badUserTable = new TableReference();
  badUserTable.setDatasetId(options.getOutputDataset());
  badUserTable.setProjectId(options.getProject());
  badUserTable.setTableId(options.getOutputTableName() + "_bad_users");

  //  1. Read game events with message id and timestamp
  //  2. Parse events
  //  3. Key by event id
  //  4. Sessionize.
  PCollection<KV<String, GameEvent>> sessionedEvents = null; /* TODO: YOUR CODE GOES HERE */

  //  1. Read play events with message id and timestamp
  //  2. Parse events
  //  3. Key by event id
  //  4. Sessionize.
  PCollection<KV<String, PlayEvent>> sessionedPlayEvents = null; /* TODO: YOUR CODE GOES HERE */

  // 1. Join events
  // 2. Compute latency using ComputeLatencyFn
  PCollection<KV<String, Long>> userLatency = null; /* TODO: YOUR CODE GOES HERE */

  // 1. Get the values of userLatencies
  // 2. Re-window into GlobalWindows with periodic repeated triggers
  // 3. Compute global approximate quantiles with fanout
  PCollectionView<List<Long>> globalQuantiles = null; /* TODO: YOUR CODE GOES HERE */

  userLatency
      // Use the computed latency distribution as a side-input to filter out likely bad users.
      .apply(
          "DetectBadUsers",
          ParDo.withSideInputs(globalQuantiles)
              .of(
                  new DoFn<KV<String, Long>, String>() {
                    public void processElement(ProcessContext c) {
                      /* TODO: YOUR CODE GOES HERE */
                      throw new RuntimeException("Not implemented");
                    }
                  }))
      // We want to only emilt a single BigQuery row for every bad user. To do this, we
      // re-key by user, then window globally and trigger on the first element for each key.
      .apply(
          "KeyByUser",
          WithKeys.of((String user) -> user).withKeyType(TypeDescriptor.of(String.class)))
      .apply(
          "GlobalWindowsTriggerOnFirst",
          Window.<KV<String, String>>into(new GlobalWindows())
              .triggering(
                  AfterProcessingTime.pastFirstElementInPane()
                      .plusDelayOf(Duration.standardSeconds(10)))
              .accumulatingFiredPanes())
      .apply("GroupByUser", GroupByKey.<String, String>create())
      .apply("FormatBadUsers", ParDo.of(new FormatBadUserFn()))
      .apply(
          "WriteBadUsers",
          BigQueryIO.Write.to(badUserTable)
              .withSchema(FormatBadUserFn.getSchema())
              .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
              .withWriteDisposition(WriteDisposition.WRITE_APPEND));

  // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
  // command line.
  PipelineResult result = pipeline.run();
}
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:73,代码来源:Exercise7.java

示例11: main

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

    Exercise6Options options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise6Options.class);
    // Enforce that this pipeline is always run in streaming mode.
    options.setStreaming(true);
    // Allow the pipeline to be cancelled automatically.
    options.setRunner(DataflowPipelineRunner.class);
    Pipeline pipeline = Pipeline.create(options);

    TableReference sessionsTable = new TableReference();
    sessionsTable.setDatasetId(options.getOutputDataset());
    sessionsTable.setProjectId(options.getProject());
    sessionsTable.setTableId(options.getOutputTableName());

    PCollection<GameEvent> rawEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

    // Extract username/score pairs from the event stream
    PCollection<KV<String, Integer>> userEvents =
        rawEvents.apply(
            "ExtractUserScore",
            MapElements.via((GameEvent gInfo) -> KV.of(gInfo.getUser(), gInfo.getScore()))
                .withOutputType(new TypeDescriptor<KV<String, Integer>>() {}));

    // Detect user sessions-- that is, a burst of activity separated by a gap from further
    // activity. Find and record the mean session lengths.
    // This information could help the game designers track the changing user engagement
    // as their set of games changes.
    userEvents
        .apply(
            Window.named("WindowIntoSessions")
                .<KV<String, Integer>>into(
                    Sessions.withGapDuration(Duration.standardMinutes(options.getSessionGap())))
                .withOutputTimeFn(OutputTimeFns.outputAtEndOfWindow()))
        // For this use, we care only about the existence of the session, not any particular
        // information aggregated over it, so the following is an efficient way to do that.
        .apply(Combine.perKey(x -> 0))
        // Get the duration per session.
        .apply("UserSessionActivity", ParDo.of(new UserSessionInfoFn()))
        // Re-window to process groups of session sums according to when the sessions complete.
        .apply(
            Window.named("WindowToExtractSessionMean")
                .<Integer>into(
                    FixedWindows.of(
                        Duration.standardMinutes(options.getUserActivityWindowDuration()))))
        // Find the mean session duration in each window.
        .apply(Mean.<Integer>globally().withoutDefaults())
        // Write this info to a BigQuery table.
        .apply(ParDo.named("FormatSessions").of(new FormatSessionWindowFn()))
        .apply(
            BigQueryIO.Write.to(sessionsTable)
                .withSchema(FormatSessionWindowFn.getSchema())
                .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
                .withWriteDisposition(WriteDisposition.WRITE_APPEND));

    // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
    // command line.
    PipelineResult result = pipeline.run();
  }
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:60,代码来源:Exercise6.java

示例12: main

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

    Exercise5Options options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise5Options.class);
    // Enforce that this pipeline is always run in streaming mode.
    options.setStreaming(true);
    // Allow the pipeline to be cancelled automatically.
    options.setRunner(DataflowPipelineRunner.class);
    Pipeline pipeline = Pipeline.create(options);

    TableReference teamTable = new TableReference();
    teamTable.setDatasetId(options.getOutputDataset());
    teamTable.setProjectId(options.getProject());
    teamTable.setTableId(options.getOutputTableName());

    PCollection<GameEvent> rawEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

    // Extract username/score pairs from the event stream
    PCollection<KV<String, Integer>> userEvents =
        rawEvents.apply(
            "ExtractUserScore",
            MapElements.via((GameEvent gInfo) -> KV.of(gInfo.getUser(), gInfo.getScore()))
                .withOutputType(new TypeDescriptor<KV<String, Integer>>() {}));

    // Calculate the total score per user over fixed windows, and
    // cumulative updates for late data.
    final PCollectionView<Map<String, Integer>> spammersView =
        userEvents
            .apply(
                Window.named("FixedWindowsUser")
                    .<KV<String, Integer>>into(
                        FixedWindows.of(
                            Duration.standardMinutes(options.getFixedWindowDuration()))))

            // Filter out everyone but those with (SCORE_WEIGHT * avg) clickrate.
            // These might be robots/spammers.
            .apply("CalculateSpammyUsers", new CalculateSpammyUsers())
            // Derive a view from the collection of spammer users. It will be used as a side input
            // in calculating the team score sums, below.
            .apply("CreateSpammersView", View.<String, Integer>asMap());

    // Calculate the total score per team over fixed windows,
    // and emit cumulative updates for late data. Uses the side input derived above-- the set of
    // suspected robots-- to filter out scores from those users from the sum.
    // Write the results to BigQuery.
    rawEvents
        .apply(
            Window.named("WindowIntoFixedWindows")
                .<GameEvent>into(
                    FixedWindows.of(Duration.standardMinutes(options.getFixedWindowDuration()))))
        // Filter out the detected spammer users, using the side input derived above.
        .apply(
            ParDo.named("FilterOutSpammers")
                .withSideInputs(spammersView)
                .of(
                    new DoFn<GameEvent, GameEvent>() {
                      @Override
                      public void processElement(ProcessContext c) {
                        // If the user is not in the spammers Map, output the data element.
                        if (c.sideInput(spammersView).get(c.element().getUser().trim()) == null) {
                          c.output(c.element());
                        }
                      }
                    }))
        // Extract and sum teamname/score pairs from the event data.
        .apply("ExtractTeamScore", new Exercise1.ExtractAndSumScore("team"))
        // Write the result to BigQuery
        .apply(ParDo.named("FormatTeamWindows").of(new FormatTeamWindowFn()))
        .apply(
            BigQueryIO.Write.to(teamTable)
                .withSchema(FormatTeamWindowFn.getSchema())
                .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
                .withWriteDisposition(WriteDisposition.WRITE_APPEND));

    // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
    // command line.
    PipelineResult result = pipeline.run();
  }
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:79,代码来源:Exercise5.java

示例13: main

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

    Exercise5Options options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(Exercise5Options.class);
    // Enforce that this pipeline is always run in streaming mode.
    options.setStreaming(true);
    // Allow the pipeline to be cancelled automatically.
    options.setRunner(DataflowPipelineRunner.class);
    Pipeline pipeline = Pipeline.create(options);

    TableReference teamTable = new TableReference();
    teamTable.setDatasetId(options.getOutputDataset());
    teamTable.setProjectId(options.getProject());
    teamTable.setTableId(options.getOutputTableName());

    PCollection<GameEvent> rawEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

    // Extract username/score pairs from the event stream
    PCollection<KV<String, Integer>> userEvents =
        rawEvents.apply(
            "ExtractUserScore",
            MapElements.via((GameEvent gInfo) -> KV.of(gInfo.getUser(), gInfo.getScore()))
                .withOutputType(new TypeDescriptor<KV<String, Integer>>() {}));

    // Calculate the total score per user over fixed windows, and
    // cumulative updates for late data.
    final PCollectionView<Map<String, Integer>> spammersView =
        userEvents
            .apply(
                Window.named("FixedWindowsUser")
                    .<KV<String, Integer>>into(
                        FixedWindows.of(
                            Duration.standardMinutes(options.getFixedWindowDuration()))))

            // Filter out everyone but those with (SCORE_WEIGHT * avg) clickrate.
            // These might be robots/spammers.
            .apply("CalculateSpammyUsers", new CalculateSpammyUsers())
            // Derive a view from the collection of spammer users. It will be used as a side input
            // in calculating the team score sums, below.
            .apply("CreateSpammersView", View.<String, Integer>asMap());

    // [START EXERCISE 5 PART b]:
    // Calculate the total score per team over fixed windows,
    // and emit cumulative updates for late data. Uses the side input derived above-- the set of
    // suspected robots-- to filter out scores from those users from the sum.
    // Write the results to BigQuery.
    rawEvents
        .apply(
            Window.named("WindowIntoFixedWindows")
                .<GameEvent>into(
                    FixedWindows.of(Duration.standardMinutes(options.getFixedWindowDuration()))))
        // Filter out the detected spammer users, using the side input derived above.
        //  Use ParDo with spammersView side input to filter out spammers.
        .apply(/* TODO: YOUR CODE GOES HERE */ new ChangeMe<PCollection<GameEvent>, GameEvent>())
        // Extract and sum teamname/score pairs from the event data.
        .apply("ExtractTeamScore", new Exercise1.ExtractAndSumScore("team"))
        // Write the result to BigQuery
        .apply(ParDo.named("FormatTeamWindows").of(new FormatTeamWindowFn()))
        .apply(
            BigQueryIO.Write.to(teamTable)
                .withSchema(FormatTeamWindowFn.getSchema())
                .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
                .withWriteDisposition(WriteDisposition.WRITE_APPEND));
    // [START EXERCISE 5 PART b]:

    // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
    // command line.
    PipelineResult result = pipeline.run();
  }
 
开发者ID:mdvorsky,项目名称:DataflowSME,代码行数:70,代码来源:Exercise5.java

示例14: FirebaseEventCoder

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
@SuppressWarnings("unchecked")
public FirebaseEventCoder(TypeDescriptor<FirebaseEvent<T>> type, Class<T> subType) {
  this((Class<FirebaseEvent<T>>) type.getRawType(), subType);
}
 
开发者ID:fhoffa,项目名称:bqpipeline,代码行数:5,代码来源:FirebaseEventCoder.java

示例15: of

import com.google.cloud.dataflow.sdk.values.TypeDescriptor; //导入依赖的package包/类
public static <K> FirebaseEventCoder<K> of(
    TypeDescriptor<FirebaseEvent<K>> type,
    Class<K> subType)  {
  return new FirebaseEventCoder<K>(type, subType);
}
 
开发者ID:fhoffa,项目名称:bqpipeline,代码行数:6,代码来源:FirebaseEventCoder.java


注:本文中的com.google.cloud.dataflow.sdk.values.TypeDescriptor类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。