本文整理汇总了Java中cc.mallet.fst.TransducerEvaluator类的典型用法代码示例。如果您正苦于以下问题:Java TransducerEvaluator类的具体用法?Java TransducerEvaluator怎么用?Java TransducerEvaluator使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
TransducerEvaluator类属于cc.mallet.fst包,在下文中一共展示了TransducerEvaluator类的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: trainGE
import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
/**
* Create and train a CRF model from the given training data,
* optionally testing it on the given test data.
*
* @param training training data
* @param testing test data (possibly <code>null</code>)
* @param constraints constraints
* @param crf model
* @param eval accuracy evaluator (possibly <code>null</code>)
* @param iterations number of training iterations
* @param var Gaussian prior variance
* @param resets Number of resets.
* @return the trained model
*/
public static CRF trainGE(InstanceList training, InstanceList testing,
ArrayList<GEConstraint> constraints, CRF crf,
TransducerEvaluator eval, int iterations, double var, int resets) {
logger.info("Training on " + training.size() + " instances");
if (testing != null)
logger.info("Testing on " + testing.size() + " instances");
assert(numThreads.value > 0);
CRFTrainerByGE trainer = new CRFTrainerByGE(crf,constraints,numThreads.value);
if (eval != null) trainer.addEvaluator(eval);
trainer.setGaussianPriorVariance(var);
trainer.setNumResets(resets);
trainer.train(training,iterations);
return crf;
}
示例2: trainPR
import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
/**
* Create and train a CRF model from the given training data,
* optionally testing it on the given test data.
*
* @param training training data
* @param testing test data (possibly <code>null</code>)
* @param constraints constraints
* @param crf model
* @param eval accuracy evaluator (possibly <code>null</code>)
* @param iterations number of training iterations
* @param var Gaussian prior variance
* @return the trained model
*/
public static CRF trainPR(InstanceList training, InstanceList testing,
ArrayList<PRConstraint> constraints, CRF crf,
TransducerEvaluator eval, int iterations, double var) {
logger.info("Training on " + training.size() + " instances");
if (testing != null)
logger.info("Testing on " + testing.size() + " instances");
assert(numThreads.value > 0);
CRFTrainerByPR trainer = new CRFTrainerByPR(crf,constraints,numThreads.value);
trainer.addEvaluator(eval);
trainer.setPGaussianPriorVariance(var);
trainer.train(training,iterations,iterations);
return crf;
}
示例3: run
import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
public static List<String> run(String trainingFilename, String testingFilename)
throws FileNotFoundException, IOException {
ArrayList<Pipe> pipes = new ArrayList<Pipe>();
pipes.add(new SimpleTaggerSentence2TokenSequence());
pipes.add(new TokenSequence2FeatureSequence());
Pipe pipe = new SerialPipes(pipes);
InstanceList trainingInstances = new InstanceList(pipe);
InstanceList testingInstances = new InstanceList(pipe);
trainingInstances.addThruPipe(new LineGroupIterator(
new BufferedReader(new InputStreamReader(new FileInputStream(trainingFilename))),
Pattern.compile("^\\s*$"), true));
testingInstances.addThruPipe(new LineGroupIterator(
new BufferedReader(new InputStreamReader(new FileInputStream(testingFilename))),
Pattern.compile("^\\s*$"), true));
HMM hmm = new HMM(pipe, null);
hmm.addStatesForLabelsConnectedAsIn(trainingInstances);
HMMTrainerByLikelihood trainer = new HMMTrainerByLikelihood(hmm);
TransducerEvaluator testingEvaluator = new SegmentationEvaluator(testingInstances, "testing");
trainer.train(trainingInstances, 100);
testingEvaluator.evaluate(trainer);
return testingInstances.stream().map(Instance::getData).map(Sequence.class::cast)
.map(hmm::transduce)
.flatMap(output -> IntStream.range(0, output.size()).mapToObj(output::get))
.map(String.class::cast).collect(toList());
// hmm.print();
}
示例4: evaluate
import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
public void evaluate(File file) throws FileNotFoundException {
// if (normalize) {
// normalizeSCLBlock(new InstanceList[] { instances }, limits);
// }
InstanceList instances = new InstanceList(pipe);
instances.addThruPipe(iteratorForFile(file));
TransducerEvaluator evaluator = new PerClassAccuracyEvaluator(
instances, "evaluation");
evaluator.evaluate(trainer);
}
示例5: trainWithFeatureInduction
import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
public boolean trainWithFeatureInduction(InstanceList trainingData,
InstanceList validationData, InstanceList testingData,
TransducerEvaluator eval, int numIterations,
int numIterationsBetweenFeatureInductions,
int numFeatureInductions, int numFeaturesPerFeatureInduction,
double trueLabelProbThreshold, boolean clusteredFeatureInduction,
double[] trainingProportions) {
return trainWithFeatureInduction(trainingData, validationData,
testingData, eval, numIterations,
numIterationsBetweenFeatureInductions, numFeatureInductions,
numFeaturesPerFeatureInduction, trueLabelProbThreshold,
clusteredFeatureInduction, trainingProportions, "exp");
}
示例6: testDualSpaceViewer
import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
public void testDualSpaceViewer () throws IOException
{
Pipe pipe = TestMEMM.makeSpacePredictionPipe ();
String[] data0 = { TestCRF.data[0] };
String[] data1 = TestCRF.data;
InstanceList training = new InstanceList (pipe);
training.addThruPipe (new ArrayIterator (data0));
InstanceList testing = new InstanceList (pipe);
testing.addThruPipe (new ArrayIterator (data1));
CRF crf = new CRF (pipe, null);
crf.addFullyConnectedStatesForLabels ();
CRFTrainerByLabelLikelihood crft = new CRFTrainerByLabelLikelihood (crf);
TokenAccuracyEvaluator eval = new TokenAccuracyEvaluator (new InstanceList[] {training, testing}, new String[] {"Training", "Testing"});
for (int i = 0; i < 5; i++) {
crft.train (training, 1);
eval.evaluate(crft);
}
CRFExtractor extor = hackCrfExtor (crf);
Extraction e1 = extor.extract (new ArrayIterator (data1));
Pipe pipe2 = TestMEMM.makeSpacePredictionPipe ();
InstanceList training2 = new InstanceList (pipe2);
training2.addThruPipe (new ArrayIterator (data0));
InstanceList testing2 = new InstanceList (pipe2);
testing2.addThruPipe (new ArrayIterator (data1));
MEMM memm = new MEMM (pipe2, null);
memm.addFullyConnectedStatesForLabels ();
MEMMTrainer memmt = new MEMMTrainer (memm);
TransducerEvaluator memmeval = new TokenAccuracyEvaluator (new InstanceList[] {training2, testing2}, new String[] {"Training2", "Testing2"});
memmt.train (training2, 5);
memmeval.evaluate(memmt);
CRFExtractor extor2 = hackCrfExtor (memm);
Extraction e2 = extor2.extract (new ArrayIterator (data1));
if (!htmlDir.exists ()) htmlDir.mkdir ();
LatticeViewer.viewDualResults (htmlDir, e1, extor, e2, extor2);
}
示例7: ignoretestDualSpaceViewer
import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
public void ignoretestDualSpaceViewer () throws IOException
{
Pipe pipe = TestMEMM.makeSpacePredictionPipe ();
String[] data0 = { TestCRF.data[0] };
String[] data1 = TestCRF.data;
InstanceList training = new InstanceList (pipe);
training.addThruPipe (new ArrayIterator (data0));
InstanceList testing = new InstanceList (pipe);
testing.addThruPipe (new ArrayIterator (data1));
CRF crf = new CRF (pipe, null);
crf.addFullyConnectedStatesForLabels ();
CRFTrainerByLabelLikelihood crft = new CRFTrainerByLabelLikelihood (crf);
TokenAccuracyEvaluator eval = new TokenAccuracyEvaluator (new InstanceList[] {training, testing}, new String[] {"Training", "Testing"});
for (int i = 0; i < 5; i++) {
crft.train (training, 1);
eval.evaluate(crft);
}
CRFExtractor extor = hackCrfExtor (crf);
Extraction e1 = extor.extract (new ArrayIterator (data1));
Pipe pipe2 = TestMEMM.makeSpacePredictionPipe ();
InstanceList training2 = new InstanceList (pipe2);
training2.addThruPipe (new ArrayIterator (data0));
InstanceList testing2 = new InstanceList (pipe2);
testing2.addThruPipe (new ArrayIterator (data1));
MEMM memm = new MEMM (pipe2, null);
memm.addFullyConnectedStatesForLabels ();
MEMMTrainer memmt = new MEMMTrainer (memm);
TransducerEvaluator memmeval = new TokenAccuracyEvaluator (new InstanceList[] {training2, testing2}, new String[] {"Training2", "Testing2"});
memmt.train (training2, 5);
memmeval.evaluate(memmt);
CRFExtractor extor2 = hackCrfExtor (memm);
Extraction e2 = extor2.extract (new ArrayIterator (data1));
if (!htmlDir.exists ()) htmlDir.mkdir ();
LatticeViewer.viewDualResults (htmlDir, e1, extor, e2, extor2);
}
示例8: test
import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
/**
* Test a transducer on the given test data, evaluating accuracy
* with the given evaluator
*
* @param model a <code>Transducer</code>
* @param eval accuracy evaluator
* @param testing test data
*/
public static void test(TransducerTrainer tt, TransducerEvaluator eval,
InstanceList testing)
{
eval.evaluateInstanceList(tt, testing, "Testing");
}