当前位置: 首页>>代码示例>>Java>>正文


Java TransducerEvaluator类代码示例

本文整理汇总了Java中cc.mallet.fst.TransducerEvaluator的典型用法代码示例。如果您正苦于以下问题:Java TransducerEvaluator类的具体用法?Java TransducerEvaluator怎么用?Java TransducerEvaluator使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


TransducerEvaluator类属于cc.mallet.fst包,在下文中一共展示了TransducerEvaluator类的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: trainGE

import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
/**
 * Create and train a CRF model from the given training data,
 * optionally testing it on the given test data.
 *
 * @param training training data
 * @param testing test data (possibly <code>null</code>)
 * @param constraints constraints
 * @param crf model
 * @param eval accuracy evaluator (possibly <code>null</code>)
 * @param iterations number of training iterations
 * @param var Gaussian prior variance
 * @param resets Number of resets.
 * @return the trained model
 */
public static CRF trainGE(InstanceList training, InstanceList testing,
    ArrayList<GEConstraint> constraints, CRF crf,
    TransducerEvaluator eval, int iterations, double var, int resets) {

  logger.info("Training on " + training.size() + " instances");
  if (testing != null)
    logger.info("Testing on " + testing.size() + " instances");
  
  assert(numThreads.value > 0);
  
  CRFTrainerByGE trainer = new CRFTrainerByGE(crf,constraints,numThreads.value);
  if (eval != null) trainer.addEvaluator(eval);
  trainer.setGaussianPriorVariance(var);
  trainer.setNumResets(resets);
  trainer.train(training,iterations);

  return crf;
}
 
开发者ID:kostagiolasn,项目名称:NucleosomePatternClassifier,代码行数:33,代码来源:SimpleTaggerWithConstraints.java

示例2: trainPR

import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
/**
 * Create and train a CRF model from the given training data,
 * optionally testing it on the given test data.
 *
 * @param training training data
 * @param testing test data (possibly <code>null</code>)
 * @param constraints constraints
 * @param crf model
 * @param eval accuracy evaluator (possibly <code>null</code>)
 * @param iterations number of training iterations
 * @param var Gaussian prior variance
 * @return the trained model
 */
public static CRF trainPR(InstanceList training, InstanceList testing,
    ArrayList<PRConstraint> constraints, CRF crf,
    TransducerEvaluator eval, int iterations, double var) {

  logger.info("Training on " + training.size() + " instances");
  if (testing != null)
    logger.info("Testing on " + testing.size() + " instances");
  
  assert(numThreads.value > 0);
  
  CRFTrainerByPR trainer = new CRFTrainerByPR(crf,constraints,numThreads.value);
  trainer.addEvaluator(eval);
  trainer.setPGaussianPriorVariance(var);
  trainer.train(training,iterations,iterations);

  return crf;
}
 
开发者ID:kostagiolasn,项目名称:NucleosomePatternClassifier,代码行数:31,代码来源:SimpleTaggerWithConstraints.java

示例3: run

import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
public static List<String> run(String trainingFilename, String testingFilename)
        throws FileNotFoundException, IOException {
  ArrayList<Pipe> pipes = new ArrayList<Pipe>();

  pipes.add(new SimpleTaggerSentence2TokenSequence());
  pipes.add(new TokenSequence2FeatureSequence());

  Pipe pipe = new SerialPipes(pipes);

  InstanceList trainingInstances = new InstanceList(pipe);
  InstanceList testingInstances = new InstanceList(pipe);

  trainingInstances.addThruPipe(new LineGroupIterator(
          new BufferedReader(new InputStreamReader(new FileInputStream(trainingFilename))),
          Pattern.compile("^\\s*$"), true));
  testingInstances.addThruPipe(new LineGroupIterator(
          new BufferedReader(new InputStreamReader(new FileInputStream(testingFilename))),
          Pattern.compile("^\\s*$"), true));

  HMM hmm = new HMM(pipe, null);
  hmm.addStatesForLabelsConnectedAsIn(trainingInstances);

  HMMTrainerByLikelihood trainer = new HMMTrainerByLikelihood(hmm);
  TransducerEvaluator testingEvaluator = new SegmentationEvaluator(testingInstances, "testing");
  trainer.train(trainingInstances, 100);
  testingEvaluator.evaluate(trainer);

  return testingInstances.stream().map(Instance::getData).map(Sequence.class::cast)
          .map(hmm::transduce)
          .flatMap(output -> IntStream.range(0, output.size()).mapToObj(output::get))
          .map(String.class::cast).collect(toList());

  // hmm.print();
}
 
开发者ID:ziy,项目名称:pkb,代码行数:35,代码来源:HmmTagger.java

示例4: evaluate

import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
public void evaluate(File file) throws FileNotFoundException {
	// if (normalize) {
	// normalizeSCLBlock(new InstanceList[] { instances }, limits);
	// }
	InstanceList instances = new InstanceList(pipe);
	instances.addThruPipe(iteratorForFile(file));
	TransducerEvaluator evaluator = new PerClassAccuracyEvaluator(
			instances, "evaluation");
	evaluator.evaluate(trainer);
}
 
开发者ID:siqil,项目名称:udaner,代码行数:11,代码来源:NER.java

示例5: trainWithFeatureInduction

import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
public boolean trainWithFeatureInduction(InstanceList trainingData,
		InstanceList validationData, InstanceList testingData,
		TransducerEvaluator eval, int numIterations,
		int numIterationsBetweenFeatureInductions,
		int numFeatureInductions, int numFeaturesPerFeatureInduction,
		double trueLabelProbThreshold, boolean clusteredFeatureInduction,
		double[] trainingProportions) {
	return trainWithFeatureInduction(trainingData, validationData,
			testingData, eval, numIterations,
			numIterationsBetweenFeatureInductions, numFeatureInductions,
			numFeaturesPerFeatureInduction, trueLabelProbThreshold,
			clusteredFeatureInduction, trainingProportions, "exp");
}
 
开发者ID:siqil,项目名称:udaner,代码行数:14,代码来源:CRFTrainerByOverlapFeatures.java

示例6: testDualSpaceViewer

import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
public void testDualSpaceViewer () throws IOException
{
  Pipe pipe = TestMEMM.makeSpacePredictionPipe ();
  String[] data0 = { TestCRF.data[0] };
  String[] data1 = TestCRF.data;

  InstanceList training = new InstanceList (pipe);
  training.addThruPipe (new ArrayIterator (data0));
  InstanceList testing = new InstanceList (pipe);
  testing.addThruPipe (new ArrayIterator (data1));

  CRF crf = new CRF (pipe, null);
  crf.addFullyConnectedStatesForLabels ();
  CRFTrainerByLabelLikelihood crft = new CRFTrainerByLabelLikelihood (crf);
  TokenAccuracyEvaluator eval = new TokenAccuracyEvaluator (new InstanceList[] {training, testing}, new String[] {"Training", "Testing"});
  for (int i = 0; i < 5; i++) {
  	crft.train (training, 1);
  	eval.evaluate(crft);
  }

  CRFExtractor extor = hackCrfExtor (crf);
  Extraction e1 = extor.extract (new ArrayIterator (data1));

  Pipe pipe2 = TestMEMM.makeSpacePredictionPipe ();
  InstanceList training2 = new InstanceList (pipe2);
  training2.addThruPipe (new ArrayIterator (data0));
  InstanceList testing2 = new InstanceList (pipe2);
  testing2.addThruPipe (new ArrayIterator (data1));

  MEMM memm = new MEMM (pipe2, null);
  memm.addFullyConnectedStatesForLabels ();
  MEMMTrainer memmt = new MEMMTrainer (memm);
  TransducerEvaluator memmeval = new TokenAccuracyEvaluator (new InstanceList[] {training2, testing2}, new String[] {"Training2", "Testing2"});
  memmt.train (training2, 5);
  memmeval.evaluate(memmt);

  CRFExtractor extor2 = hackCrfExtor (memm);
  Extraction e2 = extor2.extract (new ArrayIterator (data1));

  if (!htmlDir.exists ()) htmlDir.mkdir ();
  LatticeViewer.viewDualResults (htmlDir, e1, extor, e2, extor2);

}
 
开发者ID:kostagiolasn,项目名称:NucleosomePatternClassifier,代码行数:44,代码来源:TestLatticeViewer.java

示例7: ignoretestDualSpaceViewer

import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
public void ignoretestDualSpaceViewer () throws IOException
{
  Pipe pipe = TestMEMM.makeSpacePredictionPipe ();
  String[] data0 = { TestCRF.data[0] };
  String[] data1 = TestCRF.data;

  InstanceList training = new InstanceList (pipe);
  training.addThruPipe (new ArrayIterator (data0));
  InstanceList testing = new InstanceList (pipe);
  testing.addThruPipe (new ArrayIterator (data1));

  CRF crf = new CRF (pipe, null);
  crf.addFullyConnectedStatesForLabels ();
  CRFTrainerByLabelLikelihood crft = new CRFTrainerByLabelLikelihood (crf);
  TokenAccuracyEvaluator eval = new TokenAccuracyEvaluator (new InstanceList[] {training, testing}, new String[] {"Training", "Testing"});
  for (int i = 0; i < 5; i++) {
  	crft.train (training, 1);
  	eval.evaluate(crft);
  }

  CRFExtractor extor = hackCrfExtor (crf);
  Extraction e1 = extor.extract (new ArrayIterator (data1));

  Pipe pipe2 = TestMEMM.makeSpacePredictionPipe ();
  InstanceList training2 = new InstanceList (pipe2);
  training2.addThruPipe (new ArrayIterator (data0));
  InstanceList testing2 = new InstanceList (pipe2);
  testing2.addThruPipe (new ArrayIterator (data1));

  MEMM memm = new MEMM (pipe2, null);
  memm.addFullyConnectedStatesForLabels ();
  MEMMTrainer memmt = new MEMMTrainer (memm);
  TransducerEvaluator memmeval = new TokenAccuracyEvaluator (new InstanceList[] {training2, testing2}, new String[] {"Training2", "Testing2"});
  memmt.train (training2, 5);
  memmeval.evaluate(memmt);

  CRFExtractor extor2 = hackCrfExtor (memm);
  Extraction e2 = extor2.extract (new ArrayIterator (data1));

  if (!htmlDir.exists ()) htmlDir.mkdir ();
  LatticeViewer.viewDualResults (htmlDir, e1, extor, e2, extor2);

}
 
开发者ID:cmoen,项目名称:mallet,代码行数:44,代码来源:TestLatticeViewer.java

示例8: test

import cc.mallet.fst.TransducerEvaluator; //导入依赖的package包/类
/**
 * Test a transducer on the given test data, evaluating accuracy
 * with the given evaluator
 *
 * @param model a <code>Transducer</code>
 * @param eval accuracy evaluator
 * @param testing test data
 */
public static void test(TransducerTrainer tt, TransducerEvaluator eval,
    InstanceList testing)
{
  eval.evaluateInstanceList(tt, testing, "Testing");
}
 
开发者ID:kostagiolasn,项目名称:NucleosomePatternClassifier,代码行数:14,代码来源:SimpleTaggerWithConstraints.java


注:本文中的cc.mallet.fst.TransducerEvaluator类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。