本文整理汇总了Java中burlap.domain.singleagent.gridworld.state.GridAgent类的典型用法代码示例。如果您正苦于以下问题:Java GridAgent类的具体用法?Java GridAgent怎么用?Java GridAgent使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
GridAgent类属于burlap.domain.singleagent.gridworld.state包,在下文中一共展示了GridAgent类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: GridWorldDQN
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
public GridWorldDQN(String solverFile, double gamma) {
//create the domain
gwdg = new GridWorldDomain(11, 11);
gwdg.setMapToFourRooms();
rf = new UniformCostRF();
tf = new SinglePFTF(PropositionalFunction.findPF(gwdg.generatePfs(), GridWorldDomain.PF_AT_LOCATION));
gwdg.setRf(rf);
gwdg.setTf(tf);
domain = gwdg.generateDomain();
goalCondition = new TFGoalCondition(tf);
//set up the initial state of the task
initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0"));
//set up the state hashing system for tabular algorithms
hashingFactory = new SimpleHashableStateFactory();
//set up the environment for learners algorithms
env = new SimulatedEnvironment(domain, initialState);
dqn = new DQN(solverFile, actionSet, new NNGridStateConverter(), gamma);
}
示例2: basicState
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
/**
* Creates a grid world state with the agent in (0,0) and various different grid cell types scattered about.
* @return a grid world state with the agent in (0,0) and various different grid cell types scattered about.
*/
protected State basicState(){
GridWorldState s = new GridWorldState(
new GridAgent(0, 0),
new GridLocation(0, 0, 1, "loc0"),
new GridLocation(0, 4, 2, "loc1"),
new GridLocation(4, 4, 3, "loc2"),
new GridLocation(4, 0, 4, "loc3"),
new GridLocation(1, 0, 0, "loc4"),
new GridLocation(1, 2, 0, "loc5"),
new GridLocation(1, 4, 0, "loc6"),
new GridLocation(3, 1, 0, "loc7"),
new GridLocation(3, 3, 0, "loc8")
);
return s;
}
示例3: BasicBehavior
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
public BasicBehavior(){
gwdg = new GridWorldDomain(11, 11);
gwdg.setMapToFourRooms();
tf = new GridWorldTerminalFunction(10, 10);
gwdg.setTf(tf);
goalCondition = new TFGoalCondition(tf);
domain = gwdg.generateDomain();
initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0"));
hashingFactory = new SimpleHashableStateFactory();
env = new SimulatedEnvironment(domain, initialState);
// VisualActionObserver observer = new VisualActionObserver(domain, GridWorldVisualizer.getVisualizer(gwdg.getMap()));
// observer.initGUI();
// env.addObservers(observer);
}
示例4: main
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
public static void main(String[] args) {
GridWorldDomain gw = new GridWorldDomain(11,11); //11x11 grid world
gw.setMapToFourRooms(); //four rooms layout
gw.setProbSucceedTransitionDynamics(0.8); //stochastic transitions with 0.8 success rate
SADomain domain = gw.generateDomain(); //generate the grid world domain
//setup initial state
State s = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0"));
//create visualizer and explorer
Visualizer v = GridWorldVisualizer.getVisualizer(gw.getMap());
VisualExplorer exp = new VisualExplorer(domain, v, s);
//set control keys to use w-s-a-d
exp.addKeyAction("w", GridWorldDomain.ACTION_NORTH, "");
exp.addKeyAction("s", GridWorldDomain.ACTION_SOUTH, "");
exp.addKeyAction("a", GridWorldDomain.ACTION_WEST, "");
exp.addKeyAction("d", GridWorldDomain.ACTION_EAST, "");
exp.initGUI();
}
示例5: move
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
/**
* Attempts to move the agent into the given position, taking into account walls and blocks
* @param s the current state
* @param xd the attempted new X position of the agent
* @param yd the attempted new Y position of the agent
* @return input state s, after modification
*/
protected State move(State s, int xd, int yd){
GridWorldState gws = (GridWorldState)s;
int ax = gws.agent.x;
int ay = gws.agent.y;
int nx = ax+xd;
int ny = ay+yd;
//hit wall, so do not change position
if(nx < 0 || nx >= map.length || ny < 0 || ny >= map[0].length || map[nx][ny] == 1 ||
(xd > 0 && (map[ax][ay] == 3 || map[ax][ay] == 4)) || (xd < 0 && (map[nx][ny] == 3 || map[nx][ny] == 4)) ||
(yd > 0 && (map[ax][ay] == 2 || map[ax][ay] == 4)) || (yd < 0 && (map[nx][ny] == 2 || map[nx][ny] == 4)) ){
nx = ax;
ny = ay;
}
GridAgent nagent = gws.touchAgent();
nagent.x = nx;
nagent.y = ny;
return s;
}
示例6: main
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
public static void main(String [] args){
GridWorldDomain gwd = new GridWorldDomain(11, 11);
gwd.setTf(new GridWorldTerminalFunction(10, 10));
gwd.setMapToFourRooms();
//only go in intended directon 80% of the time
gwd.setProbSucceedTransitionDynamics(0.8);
SADomain domain = gwd.generateDomain();
//get initial state with agent in 0,0
State s = new GridWorldState(new GridAgent(0, 0));
//setup vi with 0.99 discount factor, a value
//function initialization that initializes all states to value 0, and which will
//run for 30 iterations over the state space
VITutorial vi = new VITutorial(domain, 0.99, new SimpleHashableStateFactory(),
new ConstantValueFunction(0.0), 30);
//run planning from our initial state
Policy p = vi.planFromState(s);
//evaluate the policy with one roll out visualize the trajectory
Episode ea = PolicyUtils.rollout(p, s, domain.getModel());
Visualizer v = GridWorldVisualizer.getVisualizer(gwd.getMap());
new EpisodeSequenceVisualizer(v, domain, Arrays.asList(ea));
}
示例7: main
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
public static void main(String[] args) {
GridWorldDomain gwd = new GridWorldDomain(11, 11);
gwd.setMapToFourRooms();
gwd.setProbSucceedTransitionDynamics(0.8);
gwd.setTf(new GridWorldTerminalFunction(10, 10));
SADomain domain = gwd.generateDomain();
//get initial state with agent in 0,0
State s = new GridWorldState(new GridAgent(0, 0));
//create environment
SimulatedEnvironment env = new SimulatedEnvironment(domain, s);
//create Q-learning
QLTutorial agent = new QLTutorial(domain, 0.99, new SimpleHashableStateFactory(),
new ConstantValueFunction(), 0.1, 0.1);
//run Q-learning and store results in a list
List<Episode> episodes = new ArrayList<Episode>(1000);
for(int i = 0; i < 1000; i++){
episodes.add(agent.runLearningEpisode(env));
env.resetEnvironment();
}
Visualizer v = GridWorldVisualizer.getVisualizer(gwd.getMap());
new EpisodeSequenceVisualizer(v, domain, episodes);
}
示例8: testBFS
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
@Test
public void testBFS() {
GridWorldState initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, 0, "loc0"));
DeterministicPlanner planner = new BFS(this.domain, this.goalCondition, this.hashingFactory);
planner.planFromState(initialState);
Policy p = new SDPlannerPolicy(planner);
Episode analysis = rollout(p, initialState, domain.getModel());
this.evaluateEpisode(analysis, true);
}
示例9: testDFS
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
@Test
public void testDFS() {
GridWorldState initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, 0, "loc0"));
DeterministicPlanner planner = new DFS(this.domain, this.goalCondition, this.hashingFactory, -1 , true);
planner.planFromState(initialState);
Policy p = new SDPlannerPolicy(planner);
Episode analysis = rollout(p, initialState, domain.getModel());
this.evaluateEpisode(analysis);
}
示例10: testAStar
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
@Test
public void testAStar() {
GridWorldState initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, 0, "loc0"));
Heuristic mdistHeuristic = new Heuristic() {
@Override
public double h(State s) {
GridAgent agent = ((GridWorldState)s).agent;
GridLocation location = ((GridWorldState)s).locations.get(0);
//get agent position
int ax = agent.x;
int ay = agent.y;
//get location position
int lx = location.x;
int ly = location.y;
//compute Manhattan distance
double mdist = Math.abs(ax-lx) + Math.abs(ay-ly);
return -mdist;
}
};
//provide A* the heuristic as well as the reward function so that it can keep
//track of the actual cost
DeterministicPlanner planner = new AStar(domain, goalCondition,
hashingFactory, mdistHeuristic);
planner.planFromState(initialState);
Policy p = new SDPlannerPolicy(planner);
Episode analysis = PolicyUtils.rollout(p, initialState, domain.getModel());
this.evaluateEpisode(analysis, true);
}
示例11: generateLargeGW
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
public State generateLargeGW(SADomain domain, int width) {
GridWorldState state = new GridWorldState(new GridAgent());
for (int i = 0; i < width; i++) {
state.locations.add(new GridLocation(i, width - 1 - i, "loc"+i));
}
return state;
}
示例12: AStarExample
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
public void AStarExample(String outputPath){
Heuristic mdistHeuristic = new Heuristic() {
public double h(State s) {
GridAgent a = ((GridWorldState)s).agent;
double mdist = Math.abs(a.x-10) + Math.abs(a.y-10);
return -mdist;
}
};
DeterministicPlanner planner = new AStar(domain, goalCondition, hashingFactory, mdistHeuristic);
Policy p = planner.planFromState(initialState);
PolicyUtils.rollout(p, initialState, domain.getModel()).write(outputPath + "astar");
}
示例13: main
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
public static void main(String[] args) {
GridWorldDomain gwd = new GridWorldDomain(11, 11);
SADomain domain = gwd.generateDomain();
State s = new GridWorldState(new GridAgent(1, 3));
Policy p = new RandomPolicy(domain);
Episode ea = PolicyUtils.rollout(p, s, domain.getModel(), 30);
String yamlOut = ea.serialize();
System.out.println(yamlOut);
System.out.println("\n\n");
Episode read = Episode.parseEpisode(yamlOut);
System.out.println(read.actionString());
System.out.println(read.state(0).toString());
System.out.println(read.actionSequence.size());
System.out.println(read.stateSequence.size());
}
示例14: main
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
/**
* Creates a visual explorer or terminal explorer. By default a visual explorer is presented; use the "t" argument
* to create terminal explorer. Will create a 4 rooms grid world with the agent in lower left corner and a location in
* the upper right. Use w-a-s-d to move.
* @param args command line args
*/
public static void main(String[] args) {
GridWorldDomain gwdg = new GridWorldDomain(11, 11);
gwdg.setMapToFourRooms();
//gwdg.setProbSucceedTransitionDynamics(0.75);
SADomain d = gwdg.generateDomain();
GridWorldState s = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0"));
int expMode = 1;
if(args.length > 0){
if(args[0].equals("v")){
expMode = 1;
}
else if(args[0].equals("t")){
expMode = 0;
}
}
if(expMode == 0){
EnvironmentShell shell = new EnvironmentShell(d, s);
shell.start();
}
else if(expMode == 1){
Visualizer v = GridWorldVisualizer.getVisualizer(gwdg.getMap());
VisualExplorer exp = new VisualExplorer(d, v, s);
//use w-s-a-d-x
exp.addKeyAction("w", ACTION_NORTH, "");
exp.addKeyAction("s", ACTION_SOUTH, "");
exp.addKeyAction("a", ACTION_WEST, "");
exp.addKeyAction("d", ACTION_EAST, "");
exp.initGUI();
}
}
示例15: generateState
import burlap.domain.singleagent.gridworld.state.GridAgent; //导入依赖的package包/类
public State generateState() {
GridWorldState s = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "location0"));
return s;
}