当前位置: 首页>>代码示例>>Java>>正文


Java BorderType类代码示例

本文整理汇总了Java中boofcv.core.image.border.BorderType的典型用法代码示例。如果您正苦于以下问题:Java BorderType类的具体用法?Java BorderType怎么用?Java BorderType使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


BorderType类属于boofcv.core.image.border包,在下文中一共展示了BorderType类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: generalized

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
public static <T extends ImageSingleBand, D extends ImageSingleBand>
void generalized( T input )
{
	Class<T> inputType = (Class<T>)input.getClass();
	Class<D> derivType = GImageDerivativeOps.getDerivativeType(inputType);

	T blurred = GeneralizedImageOps.createSingleBand(inputType, input.width, input.height);
	D derivX = GeneralizedImageOps.createSingleBand(derivType, input.width, input.height);
	D derivY = GeneralizedImageOps.createSingleBand(derivType, input.width, input.height);

	// Gaussian blur: Convolve a Gaussian kernel
	GBlurImageOps.gaussian(input, blurred, -1, blurRadius, null);

	// Calculate image's derivative
	GImageDerivativeOps.sobel(blurred, derivX, derivY, BorderType.EXTENDED);

	// display the results
	BufferedImage outputImage = VisualizeImageData.colorizeSign(derivX,null,-1);
	ShowImages.showWindow(outputImage,"Generalized "+inputType.getSimpleName());
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:21,代码来源:ExampleImageFilter.java

示例2: nogenerics

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
public static void nogenerics( ImageSingleBand input )
{
	Class inputType = input.getClass();
	Class derivType = GImageDerivativeOps.getDerivativeType(inputType);

	ImageSingleBand blurred = GeneralizedImageOps.createSingleBand(inputType, input.width, input.height);
	ImageSingleBand derivX = GeneralizedImageOps.createSingleBand(derivType, input.width, input.height);
	ImageSingleBand derivY = GeneralizedImageOps.createSingleBand(derivType, input.width, input.height);

	// Gaussian blur: Convolve a Gaussian kernel
	GBlurImageOps.gaussian(input, blurred, -1, blurRadius, null);

	// Calculate image's derivative
	GImageDerivativeOps.sobel(blurred, derivX, derivY, BorderType.EXTENDED);

	// display the results
	BufferedImage outputImage = VisualizeImageData.colorizeSign(derivX,null,-1);
	ShowImages.showWindow(outputImage,"Generalized "+inputType.getSimpleName());
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:20,代码来源:ExampleImageFilter.java

示例3: removeRadialImage

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
/**
 * Creates an {@Link ImageDistort} which removes radial distortion. How pixels outside the image are handled
 * is specified by the BorderType.  If BorderType.VALUE then pixels outside the image will be filled in with a
 * value of 0.  For viewing purposes it is recommended that BorderType.VALUE be used and BorderType.EXTENDED
 * in computer vision applications.  VALUE creates harsh edges which can cause false positives
 * when detecting features, which EXTENDED minimizes.
 *
 * @param param Intrinsic camera parameters
 * @param imageType Type of single band image being processed
 * @param borderType Specifies how the image border is handled.
 * @return Image distort that removes radial distortion
 */
public static <T extends ImageSingleBand> ImageDistort<T>
removeRadialImage(IntrinsicParameters param, BorderType borderType, Class<T> imageType)
{
	InterpolatePixel<T> interp = FactoryInterpolation.bilinearPixel(imageType);
	ImageBorder<T> border;
	if( borderType == BorderType.VALUE )
		border = FactoryImageBorder.value(imageType, 0);
	else
		border = FactoryImageBorder.general(imageType,borderType);

	// only compute the transform once
	ImageDistort<T> ret = FactoryDistort.distortCached(interp, border, imageType);

	PointTransform_F32 transform = transformPixelToRadial_F32(param);

	ret.setModel(new PointToPixelTransform_F32(transform));

	return ret;
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:32,代码来源:LensDistortionOps.java

示例4: PyramidDiscreteSampleBlur

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
/**
 *
 * @param kernel A blur kernel
 * @param sigma The effective amount of Gaussian blur the kernel applies
 * @param imageType Type of image processed
 * @param saveOriginalReference If a reference to the full resolution image should be saved instead of copied.
 *                              Set to false if you don't know what you are doing.
 * @param scaleFactors Scale factor for each layer in the pyramid relative to the input layer
 */
public PyramidDiscreteSampleBlur(Kernel1D kernel, double sigma, Class<T> imageType,
								 boolean saveOriginalReference, int... scaleFactors)
{
	super(imageType,saveOriginalReference,scaleFactors);

	horizontal = FactoryConvolveDown.convolve(kernel,imageType,imageType,
			BorderType.NORMALIZED,true,1);
	vertical = FactoryConvolveDown.convolve(kernel,imageType,imageType,
			BorderType.NORMALIZED,false,1);

	sigmas = new double[ scaleFactors.length ];
	sigmas[0] = 0;
	for( int i = 1; i < sigmas.length; i++ ) {
		// blur in previous layer
		double prev = sigmas[i-1];
		// the effective amount of blur applied to previous layer while being down sampled
		double applied = sigma*scaleFactors[i-1];
		// The amount of blur which has been applied to this layer
		sigmas[i] = Math.sqrt(prev*prev + applied*applied);
	}
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:31,代码来源:PyramidDiscreteSampleBlur.java

示例5: createDefaultShrinkTransform

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
/**
 * Default wavelet transform used for denoising images.
 */
private static WaveletTransform createDefaultShrinkTransform(ImageTypeInfo imageType, int numLevels,
															 double minPixelValue , double maxPixelValue ) {

	WaveletTransform descTran;

	if( !imageType.isInteger()) {
		WaveletDescription<WlCoef_F32> waveletDesc_F32 = FactoryWaveletDaub.daubJ_F32(4);
		descTran = FactoryWaveletTransform.create_F32(waveletDesc_F32,numLevels,
				(float)minPixelValue,(float)maxPixelValue);
	} else {
		WaveletDescription<WlCoef_I32> waveletDesc_I32 = FactoryWaveletDaub.biorthogonal_I32(5, BorderType.REFLECT);
		descTran = FactoryWaveletTransform.create_I(waveletDesc_I32,numLevels,
				(int)minPixelValue,(int)maxPixelValue,imageType.getImageClass());
	}
	return descTran;
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:20,代码来源:FactoryImageDenoise.java

示例6: createDesc_F32

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
private WaveletDescription<WlCoef_F32> createDesc_F32(int offset, int length, BorderType type ) {
	WlCoef_F32 forward = createRandomCoef_F32(offset, length);

	WlBorderCoef<WlCoef_F32> inverse;
	BorderIndex1D border;

	if( type == BorderType.WRAP ) {
		inverse = new WlBorderCoefStandard<WlCoef_F32>(forward);
		border = new BorderIndex1D_Wrap();
	} else {
		inverse = createFixedCoef_F32(forward);
		border = new BorderIndex1D_Reflect();
	}

	return new WaveletDescription<WlCoef_F32>(border,forward,inverse);
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:17,代码来源:PermuteWaveletCompare.java

示例7: createDesc_I32

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
private WaveletDescription<WlCoef_I32> createDesc_I32(int offset, int length, BorderType type ) {
	WlCoef_I32 forward = createRandomCoef_I32(offset, length);

	BorderIndex1D border;
	WlBorderCoef<WlCoef_I32> inverse;

	if( type == BorderType.WRAP ) {
		inverse = new WlBorderCoefStandard<WlCoef_I32>(forward);
		border = new BorderIndex1D_Wrap();
	} else {
		inverse = createFixedCoef_I32(forward);
		border = new BorderIndex1D_Reflect();
	}

	return new WaveletDescription<WlCoef_I32>(border,forward,inverse);
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:17,代码来源:PermuteWaveletCompare.java

示例8: compute

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
@Override
protected float compute(T _img, float x, float y) {
	ImageBorder<?> imgB = FactoryImageBorder.general(_img, BorderType.EXTENDED);
	GImageSingleBand img = FactoryGImageSingleBand.wrap(imgB);


	int gX = (int) x;
	int gY = (int) y;

	float v0 = img.get(gX, gY).floatValue();
	float v1 = img.get(gX + 1, gY).floatValue();
	float v2 = img.get(gX, gY + 1).floatValue();
	float v3 = img.get(gX + 1, gY + 1).floatValue();

	x %= 1f;
	y %= 1f;

	float a = 1f - x;
	float b = 1f - y;

	return a * b * v0 + x * b * v1 + a * y * v2 + x * y * v3;
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:23,代码来源:GeneralBilinearPixelChecks.java

示例9: createInputParam

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
@Override
protected Object[][] createInputParam(Method candidate, Method validation) {
	Class<?> paramTypes[] = candidate.getParameterTypes();

	Object kernel = createKernel(paramTypes[0]);

	ImageSingleBand src = ConvolutionTestHelper.createImage(validation.getParameterTypes()[1], width, height);
	GImageMiscOps.fillUniform(src, rand, 0, 5);
	ImageSingleBand dst = ConvolutionTestHelper.createImage(validation.getParameterTypes()[2], width, height);

	Object[][] ret = new Object[1][paramTypes.length];
	ret[0][0] = kernel;
	ret[0][1] = src;
	ret[0][2] = dst;
	ret[0][3] = FactoryImageBorder.general(src, BorderType.EXTENDED);

	return ret;
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:19,代码来源:TestConvolveWithBorder.java

示例10: EquirectangularToPinhole

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
public EquirectangularToPinhole() {
    ImageType<Planar<GrayU8>> imageType = ImageType.pl(3,GrayU8.class);

    InterpolatePixel<Planar<GrayU8>> interp = FactoryInterpolation.
            createPixel(0, 255, InterpolationType.BILINEAR, BorderType.EXTENDED, imageType);
   distorter = FactoryDistort.distort(false,interp,imageType);
}
 
开发者ID:lessthanoptimal,项目名称:BoofProcessing,代码行数:8,代码来源:EquirectangularToPinhole.java

示例11: removePerspective

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
/**
 * Removes perspective distortion.  4 points must be in 'this' image must be in clockwise order.
 *
 * @param outWidth Width of output image
 * @param outHeight Height of output image
 * @return Image with perspective distortion removed
 */
public SimpleGray removePerspective( int outWidth , int outHeight,
									 double x0, double y0,
									 double x1, double y1,
									 double x2, double y2,
									 double x3, double y3 )
{
	ImageGray output = (ImageGray)image.createNew(outWidth,outHeight);

	// Homography estimation algorithm.  Requires a minimum of 4 points
	Estimate1ofEpipolar computeHomography = FactoryMultiView.computeHomography(true);

	// Specify the pixel coordinates from destination to target
	ArrayList<AssociatedPair> associatedPairs = new ArrayList<AssociatedPair>();
	associatedPairs.add(new AssociatedPair(new Point2D_F64(0,0),new Point2D_F64(x0,y0)));
	associatedPairs.add(new AssociatedPair(new Point2D_F64(outWidth-1,0),new Point2D_F64(x1,y1)));
	associatedPairs.add(new AssociatedPair(new Point2D_F64(outWidth-1,outHeight-1),new Point2D_F64(x2,y2)));
	associatedPairs.add(new AssociatedPair(new Point2D_F64(0,outHeight-1),new Point2D_F64(x3,y3)));

	// Compute the homography
	DenseMatrix64F H = new DenseMatrix64F(3,3);
	computeHomography.process(associatedPairs, H);

	// Create the transform for distorting the image
	PointTransformHomography_F32 homography = new PointTransformHomography_F32(H);
	PixelTransform2_F32 pixelTransform = new PointToPixelTransform_F32(homography);

	// Apply distortion and show the results
	DistortImageOps.distortSingle(image, output, pixelTransform, InterpolationType.BILINEAR, BorderType.SKIP);

	return new SimpleGray(output);
}
 
开发者ID:lessthanoptimal,项目名称:BoofProcessing,代码行数:39,代码来源:SimpleGray.java

示例12: createImages

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
/**
 * Load and generate images
 */
public void createImages() {
	image = UtilImageIO.loadImage("../data/evaluation/standard/barbara.png");

	gray = ConvertBufferedImage.convertFromSingle(image, null, ImageUInt8.class);
	derivX = GeneralizedImageOps.createSingleBand(ImageSInt16.class, gray.getWidth(), gray.getHeight());
	derivY = GeneralizedImageOps.createSingleBand(ImageSInt16.class, gray.getWidth(), gray.getHeight());

	GImageDerivativeOps.sobel(gray,derivX,derivY, BorderType.EXTENDED);
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:13,代码来源:ExampleImageConvert.java

示例13: HomographyBilinear_F32

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
public HomographyBilinear_F32(Homography2D_F32 affine) {
	PixelTransform_F32 tran = new PixelTransformHomography_F32(affine);
	InterpolatePixel<T> interp = FactoryInterpolation.bilinearPixel(imageType);
	ImageBorder<T> border = FactoryImageBorder.general(imageType, BorderType.EXTENDED);
	
	alg = FactoryDistort.distort(interp, border, imageType);
	alg.setModel(tran);
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:9,代码来源:BenchmarkImageDistort.java

示例14: HomographyBilinearCrop_F32

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
public HomographyBilinearCrop_F32(Homography2D_F32 affine) {
	PixelTransform_F32 tran = new PixelTransformHomography_F32(affine);
	InterpolatePixel<T> interp = FactoryInterpolation.bilinearPixel(imageType);
	ImageBorder<T> border = FactoryImageBorder.general(imageType, BorderType.EXTENDED);

	alg = FactoryDistort.distort(interp,border,imageType);
	alg.setModel(tran);
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:9,代码来源:BenchmarkImageDistort.java

示例15: MapBilinear_F32

import boofcv.core.image.border.BorderType; //导入依赖的package包/类
public MapBilinear_F32( Homography2D_F32 homography ) {
	PixelTransform_F32 tran = new PixelTransformHomography_F32(homography);
	InterpolatePixel<T> interp = FactoryInterpolation.bilinearPixel(imageType);
	ImageBorder<T> border = FactoryImageBorder.general(imageType, BorderType.EXTENDED);

	alg = FactoryDistort.distortCached(interp,border,imageType);
	alg.setModel(tran);
}
 
开发者ID:intrack,项目名称:BoofCV-master,代码行数:9,代码来源:BenchmarkImageDistort.java


注:本文中的boofcv.core.image.border.BorderType类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。