本文整理汇总了Java中org.nd4j.linalg.activations.Activation.SOFTMAX属性的典型用法代码示例。如果您正苦于以下问题:Java Activation.SOFTMAX属性的具体用法?Java Activation.SOFTMAX怎么用?Java Activation.SOFTMAX使用的例子?那么恭喜您, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类org.nd4j.linalg.activations.Activation
的用法示例。
在下文中一共展示了Activation.SOFTMAX属性的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: gradientCheckMaskingOutputSimple
@Test
public void gradientCheckMaskingOutputSimple() {
int timeSeriesLength = 5;
boolean[][] mask = new boolean[5][0];
mask[0] = new boolean[] {true, true, true, true, true}; //No masking
mask[1] = new boolean[] {false, true, true, true, true}; //mask first output time step
mask[2] = new boolean[] {false, false, false, false, true}; //time series classification: mask all but last
mask[3] = new boolean[] {false, false, true, false, true}; //time series classification w/ variable length TS
mask[4] = new boolean[] {true, true, true, false, true}; //variable length TS
int nIn = 4;
int layerSize = 3;
GradientCheckSimpleScenario[] scenarios = new GradientCheckSimpleScenario[] {
new GradientCheckSimpleScenario(LossFunctions.LossFunction.MCXENT.getILossFunction(),
Activation.SOFTMAX, 2, 2),
new GradientCheckSimpleScenario(LossMixtureDensity.builder().gaussians(2).labelWidth(3).build(),
Activation.TANH, 10, 3),
new GradientCheckSimpleScenario(LossMixtureDensity.builder().gaussians(2).labelWidth(4).build(),
Activation.IDENTITY, 12, 4),
new GradientCheckSimpleScenario(LossFunctions.LossFunction.L2.getILossFunction(),
Activation.SOFTMAX, 2, 2)};
for (GradientCheckSimpleScenario s : scenarios) {
Random r = new Random(12345L);
INDArray input = Nd4j.zeros(1, nIn, timeSeriesLength);
for (int m = 0; m < 1; m++) {
for (int j = 0; j < nIn; j++) {
for (int k = 0; k < timeSeriesLength; k++) {
input.putScalar(new int[] {m, j, k}, r.nextDouble() - 0.5);
}
}
}
INDArray labels = Nd4j.zeros(1, s.labelWidth, timeSeriesLength);
for (int m = 0; m < 1; m++) {
for (int j = 0; j < timeSeriesLength; j++) {
int idx = r.nextInt(s.labelWidth);
labels.putScalar(new int[] {m, idx, j}, 1.0f);
}
}
for (int i = 0; i < mask.length; i++) {
//Create mask array:
INDArray maskArr = Nd4j.create(1, timeSeriesLength);
for (int j = 0; j < mask[i].length; j++) {
maskArr.putScalar(new int[] {0, j}, mask[i][j] ? 1.0 : 0.0);
}
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345L)
.list()
.layer(0, new GravesLSTM.Builder().nIn(nIn).nOut(layerSize)
.weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 1))
.updater(new NoOp()).build())
.layer(1, new RnnOutputLayer.Builder(s.lf).activation(s.act).nIn(layerSize).nOut(s.nOut)
.weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 1))
.updater(new NoOp()).build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork mln = new MultiLayerNetwork(conf);
mln.init();
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels, null, maskArr);
String msg = "gradientCheckMaskingOutputSimple() - timeSeriesLength=" + timeSeriesLength
+ ", miniBatchSize=" + 1;
assertTrue(msg, gradOK);
}
}
}
示例2: testPerOutputMaskingMLP
@Test
public void testPerOutputMaskingMLP() {
int nIn = 6;
int layerSize = 4;
INDArray mask1 = Nd4j.create(new double[] {1, 0, 0, 1, 0});
INDArray mask3 = Nd4j.create(new double[][] {{1, 1, 1, 1, 1}, {0, 1, 0, 1, 0}, {1, 0, 0, 1, 1}});
INDArray[] labelMasks = new INDArray[] {mask1, mask3};
ILossFunction[] lossFunctions = new ILossFunction[] {new LossBinaryXENT(),
// new LossCosineProximity(), //Doesn't support per-output masking, as it doesn't make sense for cosine proximity
new LossHinge(), new LossKLD(), new LossKLD(), new LossL1(), new LossL2(), new LossMAE(),
new LossMAE(), new LossMAPE(), new LossMAPE(),
// new LossMCXENT(), //Per output masking on MCXENT+Softmax: not yet supported
new LossMCXENT(), new LossMSE(), new LossMSE(), new LossMSLE(), new LossMSLE(),
new LossNegativeLogLikelihood(), new LossPoisson(), new LossSquaredHinge()};
Activation[] act = new Activation[] {Activation.SIGMOID, //XENT
// Activation.TANH,
Activation.TANH, //Hinge
Activation.SIGMOID, //KLD
Activation.SOFTMAX, //KLD + softmax
Activation.TANH, //L1
Activation.TANH, //L2
Activation.TANH, //MAE
Activation.SOFTMAX, //MAE + softmax
Activation.TANH, //MAPE
Activation.SOFTMAX, //MAPE + softmax
// Activation.SOFTMAX, //MCXENT + softmax: see comment above
Activation.SIGMOID, //MCXENT + sigmoid
Activation.TANH, //MSE
Activation.SOFTMAX, //MSE + softmax
Activation.SIGMOID, //MSLE - needs positive labels/activations (due to log)
Activation.SOFTMAX, //MSLE + softmax
Activation.SIGMOID, //NLL
Activation.SIGMOID, //Poisson
Activation.TANH //Squared hinge
};
for (INDArray labelMask : labelMasks) {
int minibatch = labelMask.size(0);
int nOut = labelMask.size(1);
for (int i = 0; i < lossFunctions.length; i++) {
ILossFunction lf = lossFunctions[i];
Activation a = act[i];
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().updater(new NoOp())
.weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 1)).seed(12345)
.list()
.layer(0, new DenseLayer.Builder().nIn(nIn).nOut(layerSize).activation(Activation.TANH)
.build())
.layer(1, new OutputLayer.Builder().nIn(layerSize).nOut(nOut).lossFunction(lf)
.activation(a).build())
.build();
MultiLayerNetwork net = new MultiLayerNetwork(conf);
net.init();
INDArray[] fl = LossFunctionGradientCheck.getFeaturesAndLabels(lf, minibatch, nIn, nOut, 12345);
INDArray features = fl[0];
INDArray labels = fl[1];
String msg = "testPerOutputMaskingMLP(): maskShape = " + Arrays.toString(labelMask.shape())
+ ", loss function = " + lf + ", activation = " + a;
System.out.println(msg);
boolean gradOK = GradientCheckUtil.checkGradients(net, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, features, labels, null, labelMask);
assertTrue(msg, gradOK);
}
}
}
示例3: testGradientCNNMLN
@Test
public void testGradientCNNMLN() {
//Parameterized test, testing combinations of:
// (a) activation function
// (b) Whether to test at random initialization, or after some learning (i.e., 'characteristic mode of operation')
// (c) Loss function (with specified output activations)
Activation[] activFns = {Activation.SIGMOID, Activation.TANH};
boolean[] characteristic = {false, true}; //If true: run some backprop steps first
LossFunctions.LossFunction[] lossFunctions =
{LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD, LossFunctions.LossFunction.MSE};
Activation[] outputActivations = {Activation.SOFTMAX, Activation.TANH}; //i.e., lossFunctions[i] used with outputActivations[i] here
DataSet ds = new IrisDataSetIterator(150, 150).next();
ds.normalizeZeroMeanZeroUnitVariance();
INDArray input = ds.getFeatureMatrix();
INDArray labels = ds.getLabels();
for (Activation afn : activFns) {
for (boolean doLearningFirst : characteristic) {
for (int i = 0; i < lossFunctions.length; i++) {
LossFunctions.LossFunction lf = lossFunctions[i];
Activation outputActivation = outputActivations[i];
MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder()
.optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT).updater(new NoOp())
.weightInit(WeightInit.XAVIER).seed(12345L).list()
.layer(0, new ConvolutionLayer.Builder(1, 1).nOut(6).activation(afn).build())
.layer(1, new OutputLayer.Builder(lf).activation(outputActivation).nOut(3).build())
.setInputType(InputType.convolutionalFlat(1, 4, 1)).pretrain(false).backprop(true);
MultiLayerConfiguration conf = builder.build();
MultiLayerNetwork mln = new MultiLayerNetwork(conf);
mln.init();
String name = new Object() {
}.getClass().getEnclosingMethod().getName();
if (doLearningFirst) {
//Run a number of iterations of learning
mln.setInput(ds.getFeatures());
mln.setLabels(ds.getLabels());
mln.computeGradientAndScore();
double scoreBefore = mln.score();
for (int j = 0; j < 10; j++)
mln.fit(ds);
mln.computeGradientAndScore();
double scoreAfter = mln.score();
//Can't test in 'characteristic mode of operation' if not learning
String msg = name + " - score did not (sufficiently) decrease during learning - activationFn="
+ afn + ", lossFn=" + lf + ", outputActivation=" + outputActivation
+ ", doLearningFirst= " + doLearningFirst + " (before=" + scoreBefore
+ ", scoreAfter=" + scoreAfter + ")";
assertTrue(msg, scoreAfter < 0.8 * scoreBefore);
}
if (PRINT_RESULTS) {
System.out.println(name + " - activationFn=" + afn + ", lossFn=" + lf + ", outputActivation="
+ outputActivation + ", doLearningFirst=" + doLearningFirst);
for (int j = 0; j < mln.getnLayers(); j++)
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
}
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels);
assertTrue(gradOK);
}
}
}
}
示例4: testVaeAsMLP
@Test
public void testVaeAsMLP() {
//Post pre-training: a VAE can be used as a MLP, by taking the mean value from p(z|x) as the output
//This gradient check tests this part
Activation[] activFns = {Activation.IDENTITY, Activation.TANH, Activation.IDENTITY, Activation.TANH, Activation.IDENTITY, Activation.TANH};
LossFunction[] lossFunctions = {LossFunction.MCXENT, LossFunction.MCXENT, LossFunction.MSE, LossFunction.MSE, LossFunction.MCXENT, LossFunction.MSE};
Activation[] outputActivations = {Activation.SOFTMAX, Activation.SOFTMAX, Activation.TANH, Activation.TANH, Activation.SOFTMAX, Activation.TANH};
//use l2vals[i] with l1vals[i]
double[] l2vals = {0.4, 0.0, 0.4, 0.4, 0.0, 0.0};
double[] l1vals = {0.0, 0.0, 0.5, 0.0, 0.0, 0.5};
double[] biasL2 = {0.0, 0.0, 0.0, 0.2, 0.0, 0.4};
double[] biasL1 = {0.0, 0.0, 0.6, 0.0, 0.0, 0.0};
int[][] encoderLayerSizes = new int[][] {{5}, {5}, {5, 6}, {5, 6}, {5}, {5, 6}};
int[][] decoderLayerSizes = new int[][] {{6}, {7, 8}, {6}, {7, 8}, {6}, {7, 8}};
int[] minibatches = new int[]{1,5,4,3,1,4};
Nd4j.getRandom().setSeed(12345);
for( int i=0; i<activFns.length; i++ ){
LossFunction lf = lossFunctions[i];
Activation outputActivation = outputActivations[i];
double l2 = l2vals[i];
double l1 = l1vals[i];
int[] encoderSizes = encoderLayerSizes[i];
int[] decoderSizes = decoderLayerSizes[i];
int minibatch = minibatches[i];
INDArray input = Nd4j.rand(minibatch, 4);
INDArray labels = Nd4j.create(minibatch, 3);
for (int j = 0; j < minibatch; j++) {
labels.putScalar(j, j % 3, 1.0);
}
Activation afn = activFns[i];
MultiLayerConfiguration conf =
new NeuralNetConfiguration.Builder().l2(l2).l1(l1)
.updater(new NoOp())
.l2Bias(biasL2[i]).l1Bias(biasL1[i])
.updater(new NoOp()).seed(12345L).list()
.layer(0, new VariationalAutoencoder.Builder().nIn(4)
.nOut(3).encoderLayerSizes(encoderSizes)
.decoderLayerSizes(decoderSizes)
.weightInit(WeightInit.DISTRIBUTION)
.dist(new NormalDistribution(0, 1))
.activation(afn)
.build())
.layer(1, new OutputLayer.Builder(lf)
.activation(outputActivation).nIn(3).nOut(3)
.weightInit(WeightInit.DISTRIBUTION)
.dist(new NormalDistribution(0, 1))
.build())
.pretrain(false).backprop(true).build();
MultiLayerNetwork mln = new MultiLayerNetwork(conf);
mln.init();
String msg = "testVaeAsMLP() - activationFn=" + afn + ", lossFn=" + lf
+ ", outputActivation=" + outputActivation + ", encLayerSizes = "
+ Arrays.toString(encoderSizes) + ", decLayerSizes = "
+ Arrays.toString(decoderSizes) + ", l2=" + l2 + ", l1=" + l1;
if (PRINT_RESULTS) {
System.out.println(msg);
for (int j = 0; j < mln.getnLayers(); j++)
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
}
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input,
labels);
assertTrue(msg, gradOK);
}
}