本文整理汇总了Java中com.google.android.exoplayer2.C.BUFFER_FLAG_KEY_FRAME属性的典型用法代码示例。如果您正苦于以下问题:Java C.BUFFER_FLAG_KEY_FRAME属性的具体用法?Java C.BUFFER_FLAG_KEY_FRAME怎么用?Java C.BUFFER_FLAG_KEY_FRAME使用的例子?那么, 这里精选的属性代码示例或许可以为您提供帮助。您也可以进一步了解该属性所在类com.google.android.exoplayer2.C
的用法示例。
在下文中一共展示了C.BUFFER_FLAG_KEY_FRAME属性的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: sampleMetadata
@Override
public void sampleMetadata(long timeUs, @C.BufferFlags int flags, int size, int offset,
byte[] encryptionKey) {
if (pendingFormatAdjustment) {
format(lastUnadjustedFormat);
}
if (!startWriteOperation()) {
infoQueue.commitSampleTimestamp(timeUs);
return;
}
try {
if (pendingSplice) {
if ((flags & C.BUFFER_FLAG_KEY_FRAME) == 0 || !infoQueue.attemptSplice(timeUs)) {
return;
}
pendingSplice = false;
}
timeUs += sampleOffsetUs;
long absoluteOffset = totalBytesWritten - size - offset;
infoQueue.commitSample(timeUs, flags, absoluteOffset, size, encryptionKey);
} finally {
endWriteOperation();
}
}
示例2: getIndexOfEarlierOrEqualSynchronizationSample
/**
* Returns the sample index of the closest synchronization sample at or before the given
* timestamp, if one is available.
*
* @param timeUs Timestamp adjacent to which to find a synchronization sample.
* @return Index of the synchronization sample, or {@link C#INDEX_UNSET} if none.
*/
public int getIndexOfEarlierOrEqualSynchronizationSample(long timeUs) {
// Video frame timestamps may not be sorted, so the behavior of this call can be undefined.
// Frames are not reordered past synchronization samples so this works in practice.
int startIndex = Util.binarySearchFloor(timestampsUs, timeUs, true, false);
for (int i = startIndex; i >= 0; i--) {
if ((flags[i] & C.BUFFER_FLAG_KEY_FRAME) != 0) {
return i;
}
}
return C.INDEX_UNSET;
}
示例3: getIndexOfLaterOrEqualSynchronizationSample
/**
* Returns the sample index of the closest synchronization sample at or after the given timestamp,
* if one is available.
*
* @param timeUs Timestamp adjacent to which to find a synchronization sample.
* @return index Index of the synchronization sample, or {@link C#INDEX_UNSET} if none.
*/
public int getIndexOfLaterOrEqualSynchronizationSample(long timeUs) {
int startIndex = Util.binarySearchCeil(timestampsUs, timeUs, true, false);
for (int i = startIndex; i < timestampsUs.length; i++) {
if ((flags[i] & C.BUFFER_FLAG_KEY_FRAME) != 0) {
return i;
}
}
return C.INDEX_UNSET;
}
示例4: discardUpstreamSamples
/**
* Discards samples from the write side of the buffer.
*
* @param discardFromIndex The absolute index of the first sample to be discarded.
* @return The reduced total number of bytes written, after the samples have been discarded.
*/
public long discardUpstreamSamples(int discardFromIndex) {
int discardCount = getWriteIndex() - discardFromIndex;
Assertions.checkArgument(0 <= discardCount && discardCount <= queueSize);
if (discardCount == 0) {
if (absoluteReadIndex == 0) {
// queueSize == absoluteReadIndex == 0, so nothing has been written to the queue.
return 0;
}
int lastWriteIndex = (relativeWriteIndex == 0 ? capacity : relativeWriteIndex) - 1;
return offsets[lastWriteIndex] + sizes[lastWriteIndex];
}
queueSize -= discardCount;
relativeWriteIndex = (relativeWriteIndex + capacity - discardCount) % capacity;
// Update the largest queued timestamp, assuming that the timestamps prior to a keyframe are
// always less than the timestamp of the keyframe itself, and of subsequent frames.
largestQueuedTimestampUs = Long.MIN_VALUE;
for (int i = queueSize - 1; i >= 0; i--) {
int sampleIndex = (relativeReadIndex + i) % capacity;
largestQueuedTimestampUs = Math.max(largestQueuedTimestampUs, timesUs[sampleIndex]);
if ((flags[sampleIndex] & C.BUFFER_FLAG_KEY_FRAME) != 0) {
break;
}
}
return offsets[relativeWriteIndex];
}
示例5: skipToKeyframeBefore
/**
* Attempts to locate the keyframe before or at the specified time. If
* {@code allowTimeBeyondBuffer} is {@code false} then it is also required that {@code timeUs}
* falls within the buffer.
*
* @param timeUs The seek time.
* @param allowTimeBeyondBuffer Whether the skip can succeed if {@code timeUs} is beyond the end
* of the buffer.
* @return The offset of the keyframe's data if the keyframe was present.
* {@link C#POSITION_UNSET} otherwise.
*/
public synchronized long skipToKeyframeBefore(long timeUs, boolean allowTimeBeyondBuffer) {
if (queueSize == 0 || timeUs < timesUs[relativeReadIndex]) {
return C.POSITION_UNSET;
}
if (timeUs > largestQueuedTimestampUs && !allowTimeBeyondBuffer) {
return C.POSITION_UNSET;
}
// This could be optimized to use a binary search, however in practice callers to this method
// often pass times near to the start of the buffer. Hence it's unclear whether switching to
// a binary search would yield any real benefit.
int sampleCount = 0;
int sampleCountToKeyframe = -1;
int searchIndex = relativeReadIndex;
while (searchIndex != relativeWriteIndex) {
if (timesUs[searchIndex] > timeUs) {
// We've gone too far.
break;
} else if ((flags[searchIndex] & C.BUFFER_FLAG_KEY_FRAME) != 0) {
// We've found a keyframe, and we're still before the seek position.
sampleCountToKeyframe = sampleCount;
}
searchIndex = (searchIndex + 1) % capacity;
sampleCount++;
}
if (sampleCountToKeyframe == -1) {
return C.POSITION_UNSET;
}
relativeReadIndex = (relativeReadIndex + sampleCountToKeyframe) % capacity;
absoluteReadIndex += sampleCountToKeyframe;
queueSize -= sampleCountToKeyframe;
return offsets[relativeReadIndex];
}
示例6: consume
@Override
public void consume(ParsableByteArray data) {
int offset = data.getPosition();
int limit = data.limit();
byte[] dataArray = data.data;
// Append the data to the buffer.
totalBytesWritten += data.bytesLeft();
output.sampleData(data, data.bytesLeft());
int searchOffset = offset;
while (true) {
int startCodeOffset = NalUnitUtil.findNalUnit(dataArray, searchOffset, limit, prefixFlags);
if (startCodeOffset == limit) {
// We've scanned to the end of the data without finding another start code.
if (!hasOutputFormat) {
csdBuffer.onData(dataArray, offset, limit);
}
return;
}
// We've found a start code with the following value.
int startCodeValue = data.data[startCodeOffset + 3] & 0xFF;
if (!hasOutputFormat) {
// This is the number of bytes from the current offset to the start of the next start
// code. It may be negative if the start code started in the previously consumed data.
int lengthToStartCode = startCodeOffset - offset;
if (lengthToStartCode > 0) {
csdBuffer.onData(dataArray, offset, startCodeOffset);
}
// This is the number of bytes belonging to the next start code that have already been
// passed to csdDataTargetBuffer.
int bytesAlreadyPassed = lengthToStartCode < 0 ? -lengthToStartCode : 0;
if (csdBuffer.onStartCode(startCodeValue, bytesAlreadyPassed)) {
// The csd data is complete, so we can decode and output the media format.
Pair<Format, Long> result = parseCsdBuffer(csdBuffer, formatId);
output.format(result.first);
frameDurationUs = result.second;
hasOutputFormat = true;
}
}
if (hasOutputFormat && (startCodeValue == START_GROUP || startCodeValue == START_PICTURE)) {
int bytesWrittenPastStartCode = limit - startCodeOffset;
if (foundFirstFrameInGroup) {
@C.BufferFlags int flags = isKeyframe ? C.BUFFER_FLAG_KEY_FRAME : 0;
int size = (int) (totalBytesWritten - framePosition) - bytesWrittenPastStartCode;
output.sampleMetadata(frameTimeUs, flags, size, bytesWrittenPastStartCode, null);
isKeyframe = false;
}
if (startCodeValue == START_GROUP) {
foundFirstFrameInGroup = false;
isKeyframe = true;
} else /* startCodeValue == START_PICTURE */ {
frameTimeUs = pesPtsUsAvailable ? pesTimeUs : (frameTimeUs + frameDurationUs);
framePosition = totalBytesWritten - bytesWrittenPastStartCode;
pesPtsUsAvailable = false;
foundFirstFrameInGroup = true;
}
}
offset = startCodeOffset;
searchOffset = offset + 3;
}
}
示例7: outputSample
private void outputSample(int offset) {
@C.BufferFlags int flags = sampleIsKeyframe ? C.BUFFER_FLAG_KEY_FRAME : 0;
int size = (int) (nalUnitStartPosition - samplePosition);
output.sampleMetadata(sampleTimeUs, flags, size, offset, null);
}
示例8: rechunk
/**
* Rechunk the given fixed sample size input to produce a new sequence of samples.
*
* @param fixedSampleSize Size in bytes of each sample.
* @param chunkOffsets Chunk offsets in the MP4 stream to rechunk.
* @param chunkSampleCounts Sample counts for each of the MP4 stream's chunks.
* @param timestampDeltaInTimeUnits Timestamp delta between each sample in time units.
*/
public static Results rechunk(int fixedSampleSize, long[] chunkOffsets, int[] chunkSampleCounts,
long timestampDeltaInTimeUnits) {
int maxSampleCount = MAX_SAMPLE_SIZE / fixedSampleSize;
// Count the number of new, rechunked buffers.
int rechunkedSampleCount = 0;
for (int chunkSampleCount : chunkSampleCounts) {
rechunkedSampleCount += Util.ceilDivide(chunkSampleCount, maxSampleCount);
}
long[] offsets = new long[rechunkedSampleCount];
int[] sizes = new int[rechunkedSampleCount];
int maximumSize = 0;
long[] timestamps = new long[rechunkedSampleCount];
int[] flags = new int[rechunkedSampleCount];
int originalSampleIndex = 0;
int newSampleIndex = 0;
for (int chunkIndex = 0; chunkIndex < chunkSampleCounts.length; chunkIndex++) {
int chunkSamplesRemaining = chunkSampleCounts[chunkIndex];
long sampleOffset = chunkOffsets[chunkIndex];
while (chunkSamplesRemaining > 0) {
int bufferSampleCount = Math.min(maxSampleCount, chunkSamplesRemaining);
offsets[newSampleIndex] = sampleOffset;
sizes[newSampleIndex] = fixedSampleSize * bufferSampleCount;
maximumSize = Math.max(maximumSize, sizes[newSampleIndex]);
timestamps[newSampleIndex] = (timestampDeltaInTimeUnits * originalSampleIndex);
flags[newSampleIndex] = C.BUFFER_FLAG_KEY_FRAME;
sampleOffset += sizes[newSampleIndex];
originalSampleIndex += bufferSampleCount;
chunkSamplesRemaining -= bufferSampleCount;
newSampleIndex++;
}
}
return new Results(offsets, sizes, maximumSize, timestamps, flags);
}
示例9: endMasterElement
void endMasterElement(int id) throws ParserException {
switch (id) {
case ID_SEGMENT_INFO:
if (timecodeScale == C.TIME_UNSET) {
// timecodeScale was omitted. Use the default value.
timecodeScale = 1000000;
}
if (durationTimecode != C.TIME_UNSET) {
durationUs = scaleTimecodeToUs(durationTimecode);
}
break;
case ID_SEEK:
if (seekEntryId == UNSET_ENTRY_ID || seekEntryPosition == C.POSITION_UNSET) {
throw new ParserException("Mandatory element SeekID or SeekPosition not found");
}
if (seekEntryId == ID_CUES) {
cuesContentPosition = seekEntryPosition;
}
break;
case ID_CUES:
if (!sentSeekMap) {
extractorOutput.seekMap(buildSeekMap());
sentSeekMap = true;
} else {
// We have already built the cues. Ignore.
}
break;
case ID_BLOCK_GROUP:
if (blockState != BLOCK_STATE_DATA) {
// We've skipped this block (due to incompatible track number).
return;
}
// If the ReferenceBlock element was not found for this sample, then it is a keyframe.
if (!sampleSeenReferenceBlock) {
blockFlags |= C.BUFFER_FLAG_KEY_FRAME;
}
commitSampleToOutput(tracks.get(blockTrackNumber), blockTimeUs);
blockState = BLOCK_STATE_START;
break;
case ID_CONTENT_ENCODING:
if (currentTrack.hasContentEncryption) {
if (currentTrack.encryptionKeyId == null) {
throw new ParserException("Encrypted Track found but ContentEncKeyID was not found");
}
currentTrack.drmInitData = new DrmInitData(
new SchemeData(C.UUID_NIL, MimeTypes.VIDEO_WEBM, currentTrack.encryptionKeyId));
}
break;
case ID_CONTENT_ENCODINGS:
if (currentTrack.hasContentEncryption && currentTrack.sampleStrippedBytes != null) {
throw new ParserException("Combining encryption and compression is not supported");
}
break;
case ID_TRACK_ENTRY:
if (isCodecSupported(currentTrack.codecId)) {
currentTrack.initializeOutput(extractorOutput, currentTrack.number);
tracks.put(currentTrack.number, currentTrack);
}
currentTrack = null;
break;
case ID_TRACKS:
if (tracks.size() == 0) {
throw new ParserException("No valid tracks were found");
}
extractorOutput.endTracks();
break;
default:
break;
}
}
示例10: commitSample
public synchronized void commitSample(long timeUs, @C.BufferFlags int sampleFlags, long offset,
int size, byte[] encryptionKey) {
if (upstreamKeyframeRequired) {
if ((sampleFlags & C.BUFFER_FLAG_KEY_FRAME) == 0) {
return;
}
upstreamKeyframeRequired = false;
}
Assertions.checkState(!upstreamFormatRequired);
commitSampleTimestamp(timeUs);
timesUs[relativeWriteIndex] = timeUs;
offsets[relativeWriteIndex] = offset;
sizes[relativeWriteIndex] = size;
flags[relativeWriteIndex] = sampleFlags;
encryptionKeys[relativeWriteIndex] = encryptionKey;
formats[relativeWriteIndex] = upstreamFormat;
sourceIds[relativeWriteIndex] = upstreamSourceId;
// Increment the write index.
queueSize++;
if (queueSize == capacity) {
// Increase the capacity.
int newCapacity = capacity + SAMPLE_CAPACITY_INCREMENT;
int[] newSourceIds = new int[newCapacity];
long[] newOffsets = new long[newCapacity];
long[] newTimesUs = new long[newCapacity];
int[] newFlags = new int[newCapacity];
int[] newSizes = new int[newCapacity];
byte[][] newEncryptionKeys = new byte[newCapacity][];
Format[] newFormats = new Format[newCapacity];
int beforeWrap = capacity - relativeReadIndex;
System.arraycopy(offsets, relativeReadIndex, newOffsets, 0, beforeWrap);
System.arraycopy(timesUs, relativeReadIndex, newTimesUs, 0, beforeWrap);
System.arraycopy(flags, relativeReadIndex, newFlags, 0, beforeWrap);
System.arraycopy(sizes, relativeReadIndex, newSizes, 0, beforeWrap);
System.arraycopy(encryptionKeys, relativeReadIndex, newEncryptionKeys, 0, beforeWrap);
System.arraycopy(formats, relativeReadIndex, newFormats, 0, beforeWrap);
System.arraycopy(sourceIds, relativeReadIndex, newSourceIds, 0, beforeWrap);
int afterWrap = relativeReadIndex;
System.arraycopy(offsets, 0, newOffsets, beforeWrap, afterWrap);
System.arraycopy(timesUs, 0, newTimesUs, beforeWrap, afterWrap);
System.arraycopy(flags, 0, newFlags, beforeWrap, afterWrap);
System.arraycopy(sizes, 0, newSizes, beforeWrap, afterWrap);
System.arraycopy(encryptionKeys, 0, newEncryptionKeys, beforeWrap, afterWrap);
System.arraycopy(formats, 0, newFormats, beforeWrap, afterWrap);
System.arraycopy(sourceIds, 0, newSourceIds, beforeWrap, afterWrap);
offsets = newOffsets;
timesUs = newTimesUs;
flags = newFlags;
sizes = newSizes;
encryptionKeys = newEncryptionKeys;
formats = newFormats;
sourceIds = newSourceIds;
relativeReadIndex = 0;
relativeWriteIndex = capacity;
queueSize = capacity;
capacity = newCapacity;
} else {
relativeWriteIndex++;
if (relativeWriteIndex == capacity) {
// Wrap around.
relativeWriteIndex = 0;
}
}
}