本文整理汇总了Golang中rsc/io/tmp/bootstrap/internal/obj.Addr.Type方法的典型用法代码示例。如果您正苦于以下问题:Golang Addr.Type方法的具体用法?Golang Addr.Type怎么用?Golang Addr.Type使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类rsc/io/tmp/bootstrap/internal/obj.Addr
的用法示例。
在下文中一共展示了Addr.Type方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: datagostring
func datagostring(sval string, a *obj.Addr) {
sym := stringsym(sval)
a.Type = obj.TYPE_MEM
a.Name = obj.NAME_EXTERN
a.Sym = Linksym(sym)
a.Node = sym.Def
a.Offset = 0 // header
a.Etype = TSTRING
}
示例2: Datastring
func Datastring(s string, a *obj.Addr) {
sym := stringsym(s)
a.Type = obj.TYPE_MEM
a.Name = obj.NAME_EXTERN
a.Sym = Linksym(sym)
a.Node = sym.Def
a.Offset = int64(Widthptr) + int64(Widthint) // skip header
a.Etype = Simtype[TINT]
}
示例3: addreg
func addreg(a *obj.Addr, rn int) {
a.Sym = nil
a.Node = nil
a.Offset = 0
a.Type = obj.TYPE_REG
a.Reg = int16(rn)
a.Name = 0
Ostats.Ncvtreg++
}
示例4: mkvar
func mkvar(f *Flow, a *obj.Addr) Bits {
/*
* mark registers used
*/
if a.Type == obj.TYPE_NONE {
return zbits
}
r := f.Data.(*Reg)
r.use1.b[0] |= Thearch.Doregbits(int(a.Index)) // TODO: Use RtoB
var n int
switch a.Type {
default:
regu := Thearch.Doregbits(int(a.Reg)) | Thearch.RtoB(int(a.Reg)) // TODO: Use RtoB
if regu == 0 {
return zbits
}
bit := zbits
bit.b[0] = regu
return bit
// TODO(rsc): Remove special case here.
case obj.TYPE_ADDR:
var bit Bits
if Thearch.Thechar == '5' || Thearch.Thechar == '7' || Thearch.Thechar == '9' {
goto memcase
}
a.Type = obj.TYPE_MEM
bit = mkvar(f, a)
setaddrs(bit)
a.Type = obj.TYPE_ADDR
Ostats.Naddr++
return zbits
memcase:
fallthrough
case obj.TYPE_MEM:
if r != nil {
r.use1.b[0] |= Thearch.RtoB(int(a.Reg))
}
/* NOTE: 5g did
if(r->f.prog->scond & (C_PBIT|C_WBIT))
r->set.b[0] |= RtoB(a->reg);
*/
switch a.Name {
default:
// Note: This case handles NAME_EXTERN and NAME_STATIC.
// We treat these as requiring eager writes to memory, due to
// the possibility of a fault handler looking at them, so there is
// not much point in registerizing the loads.
// If we later choose the set of candidate variables from a
// larger list, these cases could be deprioritized instead of
// removed entirely.
return zbits
case obj.NAME_PARAM,
obj.NAME_AUTO:
n = int(a.Name)
}
}
node, _ := a.Node.(*Node)
if node == nil || node.Op != ONAME || node.Orig == nil {
return zbits
}
node = node.Orig
if node.Orig != node {
Fatal("%v: bad node", Ctxt.Dconv(a))
}
if node.Sym == nil || node.Sym.Name[0] == '.' {
return zbits
}
et := int(a.Etype)
o := a.Offset
w := a.Width
if w < 0 {
Fatal("bad width %d for %v", w, Ctxt.Dconv(a))
}
flag := 0
var v *Var
for i := 0; i < nvar; i++ {
v = &vars[i]
if v.node == node && int(v.name) == n {
if v.offset == o {
if int(v.etype) == et {
if int64(v.width) == w {
// TODO(rsc): Remove special case for arm here.
if flag == 0 || Thearch.Thechar != '5' {
return blsh(uint(i))
}
}
}
}
// if they overlap, disable both
if overlap_reg(v.offset, v.width, o, int(w)) {
//.........这里部分代码省略.........
示例5: Naddr
// Naddr rewrites a to refer to n.
// It assumes that a is zeroed on entry.
func Naddr(a *obj.Addr, n *Node) {
if n == nil {
return
}
if n.Type != nil && n.Type.Etype != TIDEAL {
// TODO(rsc): This is undone by the selective clearing of width below,
// to match architectures that were not as aggressive in setting width
// during naddr. Those widths must be cleared to avoid triggering
// failures in gins when it detects real but heretofore latent (and one
// hopes innocuous) type mismatches.
// The type mismatches should be fixed and the clearing below removed.
dowidth(n.Type)
a.Width = n.Type.Width
}
switch n.Op {
default:
a := a // copy to let escape into Ctxt.Dconv
Debug['h'] = 1
Dump("naddr", n)
Fatal("naddr: bad %v %v", Oconv(int(n.Op), 0), Ctxt.Dconv(a))
case OREGISTER:
a.Type = obj.TYPE_REG
a.Reg = n.Reg
a.Sym = nil
if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width.
a.Width = 0
}
case OINDREG:
a.Type = obj.TYPE_MEM
a.Reg = n.Reg
a.Sym = Linksym(n.Sym)
a.Offset = n.Xoffset
if a.Offset != int64(int32(a.Offset)) {
Yyerror("offset %d too large for OINDREG", a.Offset)
}
if Thearch.Thechar == '8' { // TODO(rsc): Never clear a->width.
a.Width = 0
}
// n->left is PHEAP ONAME for stack parameter.
// compute address of actual parameter on stack.
case OPARAM:
a.Etype = Simtype[n.Left.Type.Etype]
a.Width = n.Left.Type.Width
a.Offset = n.Xoffset
a.Sym = Linksym(n.Left.Sym)
a.Type = obj.TYPE_MEM
a.Name = obj.NAME_PARAM
a.Node = n.Left.Orig
case OCLOSUREVAR:
if !Curfn.Func.Needctxt {
Fatal("closurevar without needctxt")
}
a.Type = obj.TYPE_MEM
a.Reg = int16(Thearch.REGCTXT)
a.Sym = nil
a.Offset = n.Xoffset
case OCFUNC:
Naddr(a, n.Left)
a.Sym = Linksym(n.Left.Sym)
case ONAME:
a.Etype = 0
if n.Type != nil {
a.Etype = Simtype[n.Type.Etype]
}
a.Offset = n.Xoffset
s := n.Sym
a.Node = n.Orig
//if(a->node >= (Node*)&n)
// fatal("stack node");
if s == nil {
s = Lookup(".noname")
}
if n.Method {
if n.Type != nil {
if n.Type.Sym != nil {
if n.Type.Sym.Pkg != nil {
s = Pkglookup(s.Name, n.Type.Sym.Pkg)
}
}
}
}
a.Type = obj.TYPE_MEM
switch n.Class {
default:
Fatal("naddr: ONAME class %v %d\n", n.Sym, n.Class)
//.........这里部分代码省略.........
示例6: Afunclit
func Afunclit(a *obj.Addr, n *Node) {
if a.Type == obj.TYPE_ADDR && a.Name == obj.NAME_EXTERN {
a.Type = obj.TYPE_MEM
a.Sym = Linksym(n.Sym)
}
}
示例7: sudoaddable
/*
* generate code to compute address of n,
* a reference to a (perhaps nested) field inside
* an array or struct.
* return 0 on failure, 1 on success.
* on success, leaves usable address in a.
*
* caller is responsible for calling sudoclean
* after successful sudoaddable,
* to release the register used for a.
*/
func sudoaddable(as int, n *gc.Node, a *obj.Addr) bool {
if n.Type == nil {
return false
}
*a = obj.Addr{}
switch n.Op {
case gc.OLITERAL:
if !gc.Isconst(n, gc.CTINT) {
break
}
v := gc.Mpgetfix(n.Val.U.Xval)
if v >= 32000 || v <= -32000 {
break
}
switch as {
default:
return false
case x86.AADDB,
x86.AADDW,
x86.AADDL,
x86.AADDQ,
x86.ASUBB,
x86.ASUBW,
x86.ASUBL,
x86.ASUBQ,
x86.AANDB,
x86.AANDW,
x86.AANDL,
x86.AANDQ,
x86.AORB,
x86.AORW,
x86.AORL,
x86.AORQ,
x86.AXORB,
x86.AXORW,
x86.AXORL,
x86.AXORQ,
x86.AINCB,
x86.AINCW,
x86.AINCL,
x86.AINCQ,
x86.ADECB,
x86.ADECW,
x86.ADECL,
x86.ADECQ,
x86.AMOVB,
x86.AMOVW,
x86.AMOVL,
x86.AMOVQ:
break
}
cleani += 2
reg := &clean[cleani-1]
reg1 := &clean[cleani-2]
reg.Op = gc.OEMPTY
reg1.Op = gc.OEMPTY
gc.Naddr(a, n)
return true
case gc.ODOT,
gc.ODOTPTR:
cleani += 2
reg := &clean[cleani-1]
reg1 := &clean[cleani-2]
reg.Op = gc.OEMPTY
reg1.Op = gc.OEMPTY
var nn *gc.Node
var oary [10]int64
o := gc.Dotoffset(n, oary[:], &nn)
if nn == nil {
sudoclean()
return false
}
if nn.Addable && o == 1 && oary[0] >= 0 {
// directly addressable set of DOTs
n1 := *nn
n1.Type = n.Type
n1.Xoffset += oary[0]
gc.Naddr(a, &n1)
return true
}
gc.Regalloc(reg, gc.Types[gc.Tptr], nil)
//.........这里部分代码省略.........