本文整理汇总了Golang中regexp.Regexp.LiteralPrefix方法的典型用法代码示例。如果您正苦于以下问题:Golang Regexp.LiteralPrefix方法的具体用法?Golang Regexp.LiteralPrefix怎么用?Golang Regexp.LiteralPrefix使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类regexp.Regexp
的用法示例。
在下文中一共展示了Regexp.LiteralPrefix方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: newSubsetLike
func newSubsetLike(expr expression.BinaryFunction, re *regexp.Regexp) expression.Visitor {
if re == nil {
// Pattern is not a constant
return newSubsetDefault(expr)
}
prefix, complete := re.LiteralPrefix()
if complete {
eq := expression.NewEq(expr.First(), expression.NewConstant(prefix))
return newSubsetEq(eq.(*expression.Eq))
}
if prefix == "" {
return newSubsetDefault(expr)
}
var and expression.Expression
le := expression.NewLE(expression.NewConstant(prefix), expr.First())
last := len(prefix) - 1
if prefix[last] < math.MaxUint8 {
bytes := []byte(prefix)
bytes[last]++
and = expression.NewAnd(le, expression.NewLT(
expr.First(),
expression.NewConstant(string(bytes))))
} else {
and = expression.NewAnd(le, expression.NewLT(
expr.First(),
expression.EMPTY_ARRAY_EXPR))
}
return newSubsetAnd(and.(*expression.And))
}
示例2: NewRegexpSearcher
func NewRegexpSearcher(indexReader index.IndexReader, pattern *regexp.Regexp, field string, boost float64, explain bool) (*RegexpSearcher, error) {
prefixTerm, complete := pattern.LiteralPrefix()
candidateTerms := make([]string, 0)
if complete {
// there is no pattern
candidateTerms = append(candidateTerms, prefixTerm)
} else {
var fieldDict index.FieldDict
var err error
if len(prefixTerm) > 0 {
fieldDict, err = indexReader.FieldDictPrefix(field, []byte(prefixTerm))
} else {
fieldDict, err = indexReader.FieldDict(field)
}
// enumerate the terms and check against regexp
tfd, err := fieldDict.Next()
for err == nil && tfd != nil {
if pattern.MatchString(tfd.Term) {
candidateTerms = append(candidateTerms, tfd.Term)
}
tfd, err = fieldDict.Next()
}
if err != nil {
return nil, err
}
}
// enumerate all the terms in the range
qsearchers := make([]search.Searcher, 0, 25)
for _, cterm := range candidateTerms {
qsearcher, err := NewTermSearcher(indexReader, cterm, field, 1.0, explain)
if err != nil {
return nil, err
}
qsearchers = append(qsearchers, qsearcher)
}
// build disjunction searcher of these ranges
searcher, err := NewDisjunctionSearcher(indexReader, qsearchers, 0, explain)
if err != nil {
return nil, err
}
return &RegexpSearcher{
indexReader: indexReader,
pattern: pattern,
field: field,
explain: explain,
searcher: searcher,
}, nil
}
示例3: NewRegexpSearcher
func NewRegexpSearcher(indexReader index.IndexReader, pattern *regexp.Regexp, field string, boost float64, explain bool) (*RegexpSearcher, error) {
prefixTerm, complete := pattern.LiteralPrefix()
var candidateTerms []string
if complete {
// there is no pattern
candidateTerms = []string{prefixTerm}
} else {
var err error
candidateTerms, err = findRegexpCandidateTerms(indexReader, pattern, field, prefixTerm)
if err != nil {
return nil, err
}
}
// enumerate all the terms in the range
qsearchers := make([]search.Searcher, 0, len(candidateTerms))
qsearchersClose := func() {
for _, searcher := range qsearchers {
_ = searcher.Close()
}
}
for _, cterm := range candidateTerms {
qsearcher, err := NewTermSearcher(indexReader, cterm, field, boost, explain)
if err != nil {
qsearchersClose()
return nil, err
}
qsearchers = append(qsearchers, qsearcher)
}
// build disjunction searcher of these ranges
searcher, err := NewDisjunctionSearcher(indexReader, qsearchers, 0, explain)
if err != nil {
qsearchersClose()
return nil, err
}
return &RegexpSearcher{
indexReader: indexReader,
pattern: pattern,
field: field,
explain: explain,
searcher: searcher,
}, nil
}
示例4: newSargLike
func newSargLike(pred expression.BinaryFunction, re *regexp.Regexp) expression.Visitor {
prefix := ""
if re != nil {
var complete bool
prefix, complete = re.LiteralPrefix()
if complete {
eq := expression.NewEq(pred.First(), expression.NewConstant(prefix))
return newSargEq(eq.(*expression.Eq))
}
}
rv := &sargLike{}
rv.sarger = func(expr2 expression.Expression) (plan.Spans, error) {
if SubsetOf(pred, expr2) {
return _SELF_SPANS, nil
}
if !pred.First().EquivalentTo(expr2) {
return nil, nil
}
span := &plan.Span{}
span.Range.Low = expression.Expressions{expression.NewConstant(prefix)}
last := len(prefix) - 1
if last >= 0 && prefix[last] < math.MaxUint8 {
bytes := []byte(prefix)
bytes[last]++
span.Range.High = expression.Expressions{expression.NewConstant(string(bytes))}
} else {
span.Range.High = _EMPTY_ARRAY
}
span.Range.Inclusion = datastore.LOW
return plan.Spans{span}, nil
}
return rv
}
示例5: FindAllIndex
// FindAllIndex returns a sorted list of non-overlapping matches of the
// regular expression r, where a match is a pair of indices specifying
// the matched slice of x.Bytes(). If n < 0, all matches are returned
// in successive order. Otherwise, at most n matches are returned and
// they may not be successive. The result is nil if there are no matches,
// or if n == 0.
//
func (x *Index) FindAllIndex(r *regexp.Regexp, n int) (result [][]int) {
// a non-empty literal prefix is used to determine possible
// match start indices with Lookup
prefix, complete := r.LiteralPrefix()
lit := []byte(prefix)
// worst-case scenario: no literal prefix
if prefix == "" {
return r.FindAllIndex(x.data, n)
}
// if regexp is a literal just use Lookup and convert its
// result into match pairs
if complete {
// Lookup returns indices that may belong to overlapping matches.
// After eliminating them, we may end up with fewer than n matches.
// If we don't have enough at the end, redo the search with an
// increased value n1, but only if Lookup returned all the requested
// indices in the first place (if it returned fewer than that then
// there cannot be more).
for n1 := n; ; n1 += 2 * (n - len(result)) /* overflow ok */ {
indices := x.Lookup(lit, n1)
if len(indices) == 0 {
return
}
sort.Ints(indices)
pairs := make([]int, 2*len(indices))
result = make([][]int, len(indices))
count := 0
prev := 0
for _, i := range indices {
if count == n {
break
}
// ignore indices leading to overlapping matches
if prev <= i {
j := 2 * count
pairs[j+0] = i
pairs[j+1] = i + len(lit)
result[count] = pairs[j : j+2]
count++
prev = i + len(lit)
}
}
result = result[0:count]
if len(result) >= n || len(indices) != n1 {
// found all matches or there's no chance to find more
// (n and n1 can be negative)
break
}
}
if len(result) == 0 {
result = nil
}
return
}
// regexp has a non-empty literal prefix; Lookup(lit) computes
// the indices of possible complete matches; use these as starting
// points for anchored searches
// (regexp "^" matches beginning of input, not beginning of line)
r = regexp.MustCompile("^" + r.String()) // compiles because r compiled
// same comment about Lookup applies here as in the loop above
for n1 := n; ; n1 += 2 * (n - len(result)) /* overflow ok */ {
indices := x.Lookup(lit, n1)
if len(indices) == 0 {
return
}
sort.Ints(indices)
result = result[0:0]
prev := 0
for _, i := range indices {
if len(result) == n {
break
}
m := r.FindIndex(x.data[i:]) // anchored search - will not run off
// ignore indices leading to overlapping matches
if m != nil && prev <= i {
m[0] = i // correct m
m[1] += i
result = append(result, m)
prev = m[1]
}
}
if len(result) >= n || len(indices) != n1 {
// found all matches or there's no chance to find more
// (n and n1 can be negative)
break
}
}
if len(result) == 0 {
result = nil
//.........这里部分代码省略.........