本文整理汇总了Golang中nimble-cube/dump.Frame类的典型用法代码示例。如果您正苦于以下问题:Golang Frame类的具体用法?Golang Frame怎么用?Golang Frame使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Frame类的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: writeVTKHeader
func writeVTKHeader(out io.Writer, q *dump.Frame) {
gridsize := q.Size()[1:]
fmt.Fprintln(out, "<?xml version=\"1.0\"?>")
fmt.Fprintln(out, "<VTKFile type=\"StructuredGrid\" version=\"0.1\" byte_order=\"LittleEndian\">")
fmt.Fprintf(out, "\t<StructuredGrid WholeExtent=\"0 %d 0 %d 0 %d\">\n", gridsize[Z]-1, gridsize[Y]-1, gridsize[X]-1)
fmt.Fprintf(out, "\t\t<Piece Extent=\"0 %d 0 %d 0 %d\">\n", gridsize[Z]-1, gridsize[Y]-1, gridsize[X]-1)
}
示例2: dumpGnuplotGZip
func dumpGnuplotGZip(f *dump.Frame, file string) {
out, err := os.OpenFile(file, os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0666)
core.Fatal(err)
out_gzip, err1 := gzip.NewWriterLevel(out, gzip.BestSpeed)
core.Fatal(err1)
out_buffered := bufio.NewWriter(out_gzip)
defer func() {
out_buffered.Flush()
out_gzip.Close()
out.Close()
}()
data := f.Tensors()
gridsize := f.Size()[1:]
cellsize := f.MeshStep
ncomp := len(data)
// Here we loop over X,Y,Z, not Z,Y,X, because
// internal in C-order == external in Fortran-order
for i := 0; i < gridsize[X]; i++ {
x := float64(i) * cellsize[X]
for j := 0; j < gridsize[Y]; j++ {
y := float64(j) * cellsize[Y]
for k := 0; k < gridsize[Z]; k++ {
z := float64(k) * cellsize[Z]
_, err := fmt.Fprint(out_buffered, z, " ", y, " ", x, "\t")
core.Fatal(err)
for c := 0; c < ncomp; c++ {
_, err := fmt.Fprint(out_buffered, data[core.SwapIndex(c, ncomp)][i][j][k], " ") // converts to user space.
core.Fatal(err)
}
_, err = fmt.Fprint(out_buffered, "\n")
core.Fatal(err)
}
_, err := fmt.Fprint(out_buffered, "\n")
core.Fatal(err)
}
core.Fatal(err)
}
out_buffered.Flush()
}
示例3: writeVTKPoints
func writeVTKPoints(out io.Writer, q *dump.Frame, dataformat string) {
fmt.Fprintln(out, "\t\t\t<Points>")
fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"points\" NumberOfComponents=\"3\" format=\"%s\">\n", dataformat)
gridsize := q.Size()[1:]
cellsize := q.MeshStep
switch dataformat {
case "ascii":
for k := 0; k < gridsize[X]; k++ {
for j := 0; j < gridsize[Y]; j++ {
for i := 0; i < gridsize[Z]; i++ {
x := (float32)(i) * (float32)(cellsize[Z])
y := (float32)(j) * (float32)(cellsize[Y])
z := (float32)(k) * (float32)(cellsize[X])
_, err := fmt.Fprint(out, x, " ", y, " ", z, " ")
core.Fatal(err)
}
}
}
case "binary":
// Conversion form float32 [4]byte in big-endian
// encoding/binary is too slow
// Inlined for performance, terabytes of data will pass here...
var bytes []byte
for k := 0; k < gridsize[X]; k++ {
for j := 0; j < gridsize[Y]; j++ {
for i := 0; i < gridsize[Z]; i++ {
x := (float32)(i) * (float32)(cellsize[Z])
y := (float32)(j) * (float32)(cellsize[Y])
z := (float32)(k) * (float32)(cellsize[X])
bytes = (*[4]byte)(unsafe.Pointer(&x))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&y))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&z))[:]
out.Write(bytes)
}
}
}
default:
core.Fatal(fmt.Errorf("Illegal VTK data format: %v. Options are: ascii, binary", dataformat))
}
fmt.Fprintln(out, "</DataArray>")
fmt.Fprintln(out, "\t\t\t</Points>")
}
示例4: dumpGnuplot
func dumpGnuplot(f *dump.Frame, file string) {
out_, err := os.OpenFile(file, os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0666)
core.Fatal(err)
defer out_.Close()
out_buffered := bufio.NewWriter(out_)
defer out_buffered.Flush()
data := f.Tensors()
gridsize := f.Size()[1:]
cellsize := f.MeshStep
// If no cell size is set, use generic cell index.
if cellsize == [3]float64{0, 0, 0} {
cellsize = [3]float64{1, 1, 1}
}
ncomp := f.Components
core.Assert(ncomp > 0)
// Here we loop over X,Y,Z, not Z,Y,X, because
// internal in C-order == external in Fortran-order
for i := 0; i < gridsize[X]; i++ {
x := float64(i) * cellsize[X]
for j := 0; j < gridsize[Y]; j++ {
y := float64(j) * cellsize[Y]
for k := 0; k < gridsize[Z]; k++ {
z := float64(k) * cellsize[Z]
_, err := fmt.Fprint(out_buffered, z, " ", y, " ", x, "\t")
core.Fatal(err)
for c := 0; c < ncomp; c++ {
_, err := fmt.Fprint(out_buffered, data[core.SwapIndex(c, ncomp)][i][j][k], " ") // converts to user space.
core.Fatal(err)
}
_, err = fmt.Fprint(out_buffered, "\n")
core.Fatal(err)
}
_, err := fmt.Fprint(out_buffered, "\n")
core.Fatal(err)
}
core.Fatal(err)
}
}
示例5: normalize
// normalize vector data to unit length
func normalize(f *dump.Frame) {
a := f.Vectors()
for i := range a[0] {
for j := range a[0][i] {
for k := range a[0][i][j] {
x, y, z := a[0][i][j][k], a[1][i][j][k], a[2][i][j][k]
norm := math.Sqrt(float64(x*x + y*y + z*z))
invnorm := float32(1)
if norm != 0 {
invnorm = float32(1 / norm)
}
a[0][i][j][k] *= invnorm
a[1][i][j][k] *= invnorm
a[2][i][j][k] *= invnorm
}
}
}
}
示例6: process
func process(f *dump.Frame, name string) {
preprocess(f)
haveOutput := false
if *flag_jpeg {
dumpImage(f, noExt(name)+".jpg")
haveOutput = true
}
if *flag_png {
dumpImage(f, noExt(name)+".png")
haveOutput = true
}
if *flag_gnuplot {
dumpGnuplot(f, noExt(name)+".gplot")
haveOutput = true
}
if *flag_gnuplotgzip {
dumpGnuplotGZip(f, noExt(name)+".gplot.gz")
haveOutput = true
}
if *flag_omf != "" {
dumpOmf(noExt(name)+".omf", f, *flag_omf)
haveOutput = true
}
if *flag_vtk != "" {
dumpVTK(noExt(name)+".vtk", f, *flag_vtk)
haveOutput = true
}
if !haveOutput || *flag_show {
f.Fprintf(os.Stdout, *flag_format)
haveOutput = true
}
}
示例7: writeOmfBinary4
// Writes data in OMF Binary 4 format
func writeOmfBinary4(out io.Writer, array *dump.Frame) {
data := array.Tensors()
gridsize := array.Size()[1:]
var bytes []byte
// OOMMF requires this number to be first to check the format
var controlnumber float32 = OMF_CONTROL_NUMBER
// Conversion form float32 [4]byte in big-endian
// Inlined for performance, terabytes of data will pass here...
bytes = (*[4]byte)(unsafe.Pointer(&controlnumber))[:]
bytes[0], bytes[1], bytes[2], bytes[3] = bytes[3], bytes[2], bytes[1], bytes[0] // swap endianess
out.Write(bytes)
// Here we loop over X,Y,Z, not Z,Y,X, because
// internal in C-order == external in Fortran-order
ncomp := array.Size()[0]
for i := 0; i < gridsize[X]; i++ {
for j := 0; j < gridsize[Y]; j++ {
for k := 0; k < gridsize[Z]; k++ {
for c := 0; c < ncomp; c++ {
// dirty conversion from float32 to [4]byte
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(c, ncomp)][i][j][k]))[:]
bytes[0], bytes[1], bytes[2], bytes[3] = bytes[3], bytes[2], bytes[1], bytes[0]
out.Write(bytes)
}
}
}
}
}
示例8: writeOmfHeader
// Writes the OMF header
func writeOmfHeader(out io.Writer, q *dump.Frame) {
gridsize := q.Size()[1:]
cellsize := q.MeshStep
hdr(out, "OOMMF", "rectangular mesh v1.0")
hdr(out, "Segment count", "1")
hdr(out, "Begin", "Segment")
hdr(out, "Begin", "Header")
dsc(out, "Time", q.Time)
hdr(out, "Title", q.DataLabel)
hdr(out, "meshtype", "rectangular")
hdr(out, "meshunit", q.MeshUnit)
hdr(out, "xbase", cellsize[Z]/2)
hdr(out, "ybase", cellsize[Y]/2)
hdr(out, "zbase", cellsize[X]/2)
hdr(out, "xstepsize", cellsize[Z])
hdr(out, "ystepsize", cellsize[Y])
hdr(out, "zstepsize", cellsize[X])
hdr(out, "xmin", 0)
hdr(out, "ymin", 0)
hdr(out, "zmin", 0)
hdr(out, "xmax", cellsize[Z]*float64(gridsize[Z]))
hdr(out, "ymax", cellsize[Y]*float64(gridsize[Y]))
hdr(out, "zmax", cellsize[X]*float64(gridsize[X]))
hdr(out, "xnodes", gridsize[Z])
hdr(out, "ynodes", gridsize[Y])
hdr(out, "znodes", gridsize[X])
hdr(out, "ValueRangeMinMag", 1e-08) // not so "optional" as the OOMMF manual suggests...
hdr(out, "ValueRangeMaxMag", 1) // TODO
hdr(out, "valueunit", "?")
hdr(out, "valuemultiplier", 1)
hdr(out, "End", "Header")
}
示例9: writeOmfText
// Writes data in OMF Text format
func writeOmfText(out io.Writer, tens *dump.Frame) {
data := tens.Tensors()
gridsize := tens.Size()[1:]
// Here we loop over X,Y,Z, not Z,Y,X, because
// internal in C-order == external in Fortran-order
for i := 0; i < gridsize[X]; i++ {
for j := 0; j < gridsize[Y]; j++ {
for k := 0; k < gridsize[Z]; k++ {
for c := 0; c < tens.Size()[0]; c++ {
_, err := fmt.Fprint(out, data[core.SwapIndex(c, tens.Size()[0])][i][j][k], " ") // converts to user space.
core.Fatal(err)
}
_, err := fmt.Fprint(out, "\n")
core.Fatal(err)
}
}
}
}
示例10: dumpImage
func dumpImage(f *dump.Frame, file string) {
var img *image.NRGBA
{
dim := f.Size()[0]
switch dim {
default:
core.Fatal(fmt.Errorf("unsupported number of components: %v", dim))
case 3:
img = DrawVectors(f.Vectors())
case 1:
min, max := extrema(f.Data)
if *flag_min != "auto" {
m, err := strconv.ParseFloat(*flag_min, 32)
core.Fatal(err)
min = float32(m)
}
if *flag_max != "auto" {
m, err := strconv.ParseFloat(*flag_max, 32)
core.Fatal(err)
max = float32(m)
}
img = DrawFloats(f.Floats(), min, max)
}
}
out, err := os.OpenFile(file, os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0666)
core.Fatal(err)
defer out.Close()
ext := path.Ext(file)
switch ext {
default:
core.Fatal(fmt.Errorf("unsupported image type: %v", ext))
case ".png":
core.Fatal(png.Encode(out, img))
case ".jpg":
core.Fatal(jpeg.Encode(out, img, nil))
}
}
示例11: writeVTKCellData
func writeVTKCellData(out io.Writer, q *dump.Frame, dataformat string) {
N := q.Size()[0]
data := q.Tensors()
switch N {
case 1:
fmt.Fprintf(out, "\t\t\t<PointData Scalars=\"%s\">\n", q.DataLabel)
fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"%s\" NumberOfComponents=\"%d\" format=\"%s\">\n", q.DataLabel, N, dataformat)
case 3:
fmt.Fprintf(out, "\t\t\t<PointData Vectors=\"%s\">\n", q.DataLabel)
fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"%s\" NumberOfComponents=\"%d\" format=\"%s\">\n", q.DataLabel, N, dataformat)
case 6, 9:
fmt.Fprintf(out, "\t\t\t<PointData Tensors=\"%s\">\n", q.DataLabel)
fmt.Fprintf(out, "\t\t\t\t<DataArray type=\"Float32\" Name=\"%s\" NumberOfComponents=\"%d\" format=\"%s\">\n", q.DataLabel, 9, dataformat) // must be 9!
default:
core.Fatal(fmt.Errorf("vtk: cannot handle %v components"))
}
gridsize := q.MeshSize
switch dataformat {
case "ascii":
for i := 0; i < gridsize[X]; i++ {
for j := 0; j < gridsize[Y]; j++ {
for k := 0; k < gridsize[Z]; k++ {
// if symmetric tensor manage it appart to write the full 9 components
if N == 6 {
fmt.Fprint(out, data[core.SwapIndex(0, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(1, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(2, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(1, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(3, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(4, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(2, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(4, 9)][i][j][k], " ")
fmt.Fprint(out, data[core.SwapIndex(5, 9)][i][j][k], " ")
} else {
for c := 0; c < N; c++ {
fmt.Fprint(out, data[core.SwapIndex(c, N)][i][j][k], " ")
}
}
}
}
}
case "binary":
// Inlined for performance, terabytes of data will pass here...
var bytes []byte
for i := 0; i < gridsize[X]; i++ {
for j := 0; j < gridsize[Y]; j++ {
for k := 0; k < gridsize[Z]; k++ {
// if symmetric tensor manage it appart to write the full 9 components
if N == 6 {
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(0, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(1, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(2, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(1, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(3, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(4, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(2, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(4, 9)][i][j][k]))[:]
out.Write(bytes)
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(5, 9)][i][j][k]))[:]
out.Write(bytes)
} else {
for c := 0; c < N; c++ {
bytes = (*[4]byte)(unsafe.Pointer(&data[core.SwapIndex(c, N)][i][j][k]))[:]
out.Write(bytes)
}
}
}
}
}
default:
core.Fatal(fmt.Errorf("vtk: illegal data format " + dataformat + ". Options are: ascii, binary"))
}
fmt.Fprintln(out, "</DataArray>")
fmt.Fprintln(out, "\t\t\t</PointData>")
}