本文整理汇总了Golang中Matrix.Matrix.GetNColumns方法的典型用法代码示例。如果您正苦于以下问题:Golang Matrix.GetNColumns方法的具体用法?Golang Matrix.GetNColumns怎么用?Golang Matrix.GetNColumns使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Matrix.Matrix
的用法示例。
在下文中一共展示了Matrix.GetNColumns方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: FFT_ct
func FFT_ct(this *Matrix.Matrix, N, skip int, tf *[]complex128) *Matrix.Matrix {
Xr := Matrix.NullMatrixP(N, this.GetNColumns())
RowTemp := Matrix.NullMatrixP(1, this.GetNColumns())
FFT_aux(this, Xr, RowTemp, N, skip, tf)
return Xr
}
示例2: ForwardPropagation
//TODO the activation function and his Derviate has to be more general.. to implemente soft-max for example
func (this *ANN) ForwardPropagation(In *Matrix.Matrix) (As, AsDerviate *([]*Matrix.Matrix), Output *Matrix.Matrix) {
if In.GetMRows() == this.Inputs && In.GetNColumns() == 1 {
As1 := make([]*Matrix.Matrix, len(this.Weights)+1, len(this.Weights)+1)
AsDerviate1 := make([]*Matrix.Matrix, len(this.Weights)+1, len(this.Weights)+1)
As := &As1
AsDerviate = &AsDerviate1
sTemp := In.Transpose()
//Add a new column for a Bias Weight
sTemp = sTemp.AddColumn(Matrix.I(1))
holeInput := sTemp.Copy()
As1[0] = sTemp.Transpose()
//Derivate
//sutract, _ := Matrix.Sustract(Matrix.OnesMatrix(As1[0].GetMRows(), 1), As1[0])
//derivate := Matrix.DotMultiplication(As1[0], sutract)
//derivate := holeInput.Apply(this.Derivate)
derivate := this.DarivateActivationLayer(holeInput)
AsDerviate1[0] = derivate.Transpose()
for i := 0; i < len(this.Weights); i++ {
sTemp = Matrix.Product(sTemp, (this.Weights[i]))
//apply the activation functions
holeInput := sTemp.Copy()
sTemp = this.ActivationLayer(sTemp)
//sTemp = sTemp.Apply(this.Activation)
//Add a new column for a Bias Weight
sTemp = sTemp.AddColumn(Matrix.I(1))
(*As)[i+1] = sTemp.Transpose()
//Derivate
//sutract, _ := Matrix.Sustract(Matrix.OnesMatrix((*As)[i+1].GetMRows(), 1), (*As)[i+1])
//derivate := Matrix.DotMultiplication((*As)[i+1], sutract)
derivate := this.DarivateActivationLayer(holeInput)
//derivate := holeInput.Apply(this.Derivate)
(*AsDerviate)[i+1] = derivate.Transpose()
}
Asf := sTemp.Copy()
//Asf = Asf.AddColumn(Matrix.I(1))
(*As)[len(As1)-1] = Asf.Transpose()
Output = sTemp.Transpose().MatrixWithoutLastRow()
return As, AsDerviate, Output
}
return nil, nil, nil
}
示例3: DSoftmax
func DSoftmax(X *Matrix.Matrix) *Matrix.Matrix {
Total := 1 / X.TaxicabNorm()
Y := X.Scalar(complex(Total, 0))
S, _ := Matrix.Sustract(Matrix.FixValueMatrix(X.GetNColumns(), X.GetNColumns(), 1.0), X)
YD := Matrix.DotMultiplication(Y, S)
return YD
}
示例4: FFT_ct2
func FFT_ct2(this *Matrix.Matrix, N, skip int, tf *[]complex128) *Matrix.Matrix {
Xr := Matrix.NullMatrixP(N, this.GetNColumns())
Scratch := Matrix.NullMatrixP(N, this.GetNColumns())
var E, D, Xp, Xstart *Matrix.Matrix
var evenIteration bool
if N%2 == 0 {
evenIteration = true
} else {
evenIteration = false
}
if N == 1 {
Xr.SetRow(1, this.GetReferenceRow(1))
}
E = this
for n := 1; n < N; n *= 2 {
if evenIteration {
Xstart = Scratch
} else {
Xstart = Xr
}
skip := N / (2 * n)
Xp = Xstart
for k := 0; k != n; k++ {
for m := 0; m != skip; m++ {
D = E.MatrixWithoutFirstRows(skip)
D.ScalarRow(1, (*tf)[skip*k])
sr, rr, _ := Matrix.Sum_Sustract(E.GetReferenceRow(1), D.GetReferenceRow(1))
Xp.SetRow(1, sr)
Xp.SetRow(N/2+1, rr)
Xp = Xp.MatrixWithoutFirstRows(1)
E = E.MatrixWithoutFirstRows(1)
}
E = E.MatrixWithoutFirstRows(skip)
}
E = Xstart
evenIteration = !evenIteration
}
return Scratch
}
示例5: FFT_ct3
func FFT_ct3(this *Matrix.Matrix, N, skip int, tf *[]complex128) *Matrix.Matrix {
Xr := Matrix.NullMatrixP(N, this.GetNColumns())
Scratch := Matrix.NullMatrixP(N, this.GetNColumns())
var E, D, Xp, Xstart *Matrix.Matrix
var evenIteration bool
if N%2 == 0 {
evenIteration = true
} else {
evenIteration = false
}
if N == 1 {
Xr.SetRow(1, this.GetReferenceRow(1))
}
E = this
for n := 1; n < N; n *= 2 {
if evenIteration {
Xstart = Scratch
} else {
Xstart = Xr
}
skip := N / (2 * n)
Xp = Xstart
for k := 0; k != n; k++ {
var Aux = func(m0, m1 int, Xp, E, D *Matrix.Matrix) {
println("-", m0)
Xp = Xp.MatrixWithoutFirstRows(m0)
E = E.MatrixWithoutFirstRows(m0)
//D = E.MatrixWithoutFirstRows(skip)
for m := m0; m < m1; m++ {
D = E.MatrixWithoutFirstRows(skip)
D.ScalarRow(1, (*tf)[skip*k])
sr, rr, _ := Matrix.Sum_Sustract(E.GetReferenceRow(1), D.GetReferenceRow(1))
Xp.SetRow(1, sr)
Xp.SetRow(N/2+1, rr)
Xp = Xp.MatrixWithoutFirstRows(1)
println("E", E.ToString())
E = E.MatrixWithoutFirstRows(1)
}
}
mm := skip / 2
m0 := 0
//m1 := skip
go Aux(m0, mm, Xp, E, D)
//println("->E", E.ToString(), ">XP", Xp.ToString())
//go Aux(mm, m1, Xp, E, D)
//for m := 0; m != skip; m++ {
// D = E.MatrixWithoutFirstRows(skip)
// D.ScalarRow(1, (*tf)[skip*k])
// sr, rr, _ := Matrix.Sum_Sustract(E.GetReferenceRow(1), D.GetReferenceRow(1))
// Xp.SetRow(1, sr)
// Xp.SetRow(N/2+1, rr)
// Xp = Xp.MatrixWithoutFirstRows(1)
// E = E.MatrixWithoutFirstRows(1)
//}
E = E.MatrixWithoutFirstRows(skip)
}
E = Xstart
evenIteration = !evenIteration
}
return Scratch
}