本文整理汇总了Golang中golang.org/x/tools/go/exact.Uint64Val函数的典型用法代码示例。如果您正苦于以下问题:Golang Uint64Val函数的具体用法?Golang Uint64Val怎么用?Golang Uint64Val使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了Uint64Val函数的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: Uint64
// Uint64 returns the numeric value of this constant truncated to fit
// an unsigned 64-bit integer.
//
func (c *Const) Uint64() uint64 {
switch x := c.Value; x.Kind() {
case exact.Int:
if u, ok := exact.Uint64Val(x); ok {
return u
}
return 0
case exact.Float:
f, _ := exact.Float64Val(x)
return uint64(f)
}
panic(fmt.Sprintf("unexpected constant value: %T", c.Value))
}
示例2: evaluateExp
func (filter *ScenarioFilterBasedOnTags) evaluateExp(tagExpression string) (bool, error) {
tre := regexp.MustCompile("true")
fre := regexp.MustCompile("false")
s := fre.ReplaceAllString(tre.ReplaceAllString(tagExpression, "1"), "0")
val, err := types.Eval(s, nil, nil)
if err != nil {
return false, errors.New("Invalid Expression.\n" + err.Error())
}
res, _ := exact.Uint64Val(val.Value)
var final bool
if res == 1 {
final = true
} else {
final = false
}
return final, nil
}
示例3: genDecl
// genDecl processes one declaration clause.
func (f *File) genDecl(node ast.Node) bool {
decl, ok := node.(*ast.GenDecl)
if !ok || decl.Tok != token.CONST {
// We only care about const declarations.
return true
}
// The name of the type of the constants we are declaring.
// Can change if this is a multi-element declaration.
typ := ""
// Loop over the elements of the declaration. Each element is a ValueSpec:
// a list of names possibly followed by a type, possibly followed by values.
// If the type and value are both missing, we carry down the type (and value,
// but the "go/types" package takes care of that).
for _, spec := range decl.Specs {
vspec := spec.(*ast.ValueSpec) // Guaranteed to succeed as this is CONST.
if vspec.Type == nil && len(vspec.Values) > 0 {
// "X = 1". With no type but a value, the constant is untyped.
// Skip this vspec and reset the remembered type.
typ = ""
continue
}
if vspec.Type != nil {
// "X T". We have a type. Remember it.
ident, ok := vspec.Type.(*ast.Ident)
if !ok {
continue
}
typ = ident.Name
}
if typ != f.typeName {
// This is not the type we're looking for.
continue
}
// We now have a list of names (from one line of source code) all being
// declared with the desired type.
// Grab their names and actual values and store them in f.values.
for _, name := range vspec.Names {
if name.Name == "_" {
continue
}
// This dance lets the type checker find the values for us. It's a
// bit tricky: look up the object declared by the name, find its
// types.Const, and extract its value.
obj, ok := f.pkg.defs[name]
if !ok {
log.Fatalf("no value for constant %s", name)
}
info := obj.Type().Underlying().(*types.Basic).Info()
if info&types.IsInteger == 0 {
log.Fatalf("can't handle non-integer constant type %s", typ)
}
value := obj.(*types.Const).Val() // Guaranteed to succeed as this is CONST.
if value.Kind() != exact.Int {
log.Fatalf("can't happen: constant is not an integer %s", name)
}
i64, isInt := exact.Int64Val(value)
u64, isUint := exact.Uint64Val(value)
if !isInt && !isUint {
log.Fatalf("internal error: value of %s is not an integer: %s", name, value.String())
}
if !isInt {
u64 = uint64(i64)
}
v := Value{
name: name.Name,
value: u64,
signed: info&types.IsUnsigned == 0,
str: value.String(),
}
f.values = append(f.values, v)
}
}
return false
}
示例4: translateExpr
func (c *funcContext) translateExpr(expr ast.Expr) *expression {
exprType := c.p.TypeOf(expr)
if value := c.p.Types[expr].Value; value != nil {
basic := exprType.Underlying().(*types.Basic)
switch {
case isBoolean(basic):
return c.formatExpr("%s", strconv.FormatBool(exact.BoolVal(value)))
case isInteger(basic):
if is64Bit(basic) {
if basic.Kind() == types.Int64 {
d, ok := exact.Int64Val(value)
if !ok {
panic("could not get exact uint")
}
return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatInt(d>>32, 10), strconv.FormatUint(uint64(d)&(1<<32-1), 10))
}
d, ok := exact.Uint64Val(value)
if !ok {
panic("could not get exact uint")
}
return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatUint(d>>32, 10), strconv.FormatUint(d&(1<<32-1), 10))
}
d, ok := exact.Int64Val(value)
if !ok {
panic("could not get exact int")
}
return c.formatExpr("%s", strconv.FormatInt(d, 10))
case isFloat(basic):
f, _ := exact.Float64Val(value)
return c.formatExpr("%s", strconv.FormatFloat(f, 'g', -1, 64))
case isComplex(basic):
r, _ := exact.Float64Val(exact.Real(value))
i, _ := exact.Float64Val(exact.Imag(value))
if basic.Kind() == types.UntypedComplex {
exprType = types.Typ[types.Complex128]
}
return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatFloat(r, 'g', -1, 64), strconv.FormatFloat(i, 'g', -1, 64))
case isString(basic):
return c.formatExpr("%s", encodeString(exact.StringVal(value)))
default:
panic("Unhandled constant type: " + basic.String())
}
}
var obj types.Object
switch e := expr.(type) {
case *ast.SelectorExpr:
obj = c.p.Uses[e.Sel]
case *ast.Ident:
obj = c.p.Defs[e]
if obj == nil {
obj = c.p.Uses[e]
}
}
if obj != nil && typesutil.IsJsPackage(obj.Pkg()) {
switch obj.Name() {
case "Global":
return c.formatExpr("$global")
case "Module":
return c.formatExpr("$module")
case "Undefined":
return c.formatExpr("undefined")
}
}
switch e := expr.(type) {
case *ast.CompositeLit:
if ptrType, isPointer := exprType.(*types.Pointer); isPointer {
exprType = ptrType.Elem()
}
collectIndexedElements := func(elementType types.Type) []string {
var elements []string
i := 0
zero := c.translateExpr(c.zeroValue(elementType)).String()
for _, element := range e.Elts {
if kve, isKve := element.(*ast.KeyValueExpr); isKve {
key, ok := exact.Int64Val(c.p.Types[kve.Key].Value)
if !ok {
panic("could not get exact int")
}
i = int(key)
element = kve.Value
}
for len(elements) <= i {
elements = append(elements, zero)
}
elements[i] = c.translateImplicitConversionWithCloning(element, elementType).String()
i++
}
return elements
}
switch t := exprType.Underlying().(type) {
case *types.Array:
elements := collectIndexedElements(t.Elem())
if len(elements) == 0 {
return c.formatExpr("%s.zero()", c.typeName(t))
}
//.........这里部分代码省略.........
示例5: formatExprInternal
func (c *funcContext) formatExprInternal(format string, a []interface{}, parens bool) *expression {
processFormat := func(f func(uint8, uint8, int)) {
n := 0
for i := 0; i < len(format); i++ {
b := format[i]
if b == '%' {
i++
k := format[i]
if k >= '0' && k <= '9' {
n = int(k - '0' - 1)
i++
k = format[i]
}
f(0, k, n)
n++
continue
}
f(b, 0, 0)
}
}
counts := make([]int, len(a))
processFormat(func(b, k uint8, n int) {
switch k {
case 'e', 'f', 'h', 'l', 'r', 'i':
counts[n]++
}
})
out := bytes.NewBuffer(nil)
vars := make([]string, len(a))
hasAssignments := false
for i, e := range a {
if counts[i] <= 1 {
continue
}
if _, isIdent := e.(*ast.Ident); isIdent {
continue
}
if val := c.p.Types[e.(ast.Expr)].Value; val != nil {
continue
}
if !hasAssignments {
hasAssignments = true
out.WriteByte('(')
parens = false
}
v := c.newVariable("x")
out.WriteString(v + " = " + c.translateExpr(e.(ast.Expr)).String() + ", ")
vars[i] = v
}
processFormat(func(b, k uint8, n int) {
writeExpr := func(suffix string) {
if vars[n] != "" {
out.WriteString(vars[n] + suffix)
return
}
out.WriteString(c.translateExpr(a[n].(ast.Expr)).StringWithParens() + suffix)
}
switch k {
case 0:
out.WriteByte(b)
case 's':
if e, ok := a[n].(*expression); ok {
out.WriteString(e.StringWithParens())
return
}
out.WriteString(a[n].(string))
case 'd':
out.WriteString(strconv.Itoa(a[n].(int)))
case 't':
out.WriteString(a[n].(token.Token).String())
case 'e':
e := a[n].(ast.Expr)
if val := c.p.Types[e].Value; val != nil {
out.WriteString(c.translateExpr(e).String())
return
}
writeExpr("")
case 'f':
e := a[n].(ast.Expr)
if val := c.p.Types[e].Value; val != nil {
d, _ := exact.Int64Val(val)
out.WriteString(strconv.FormatInt(d, 10))
return
}
if is64Bit(c.p.TypeOf(e).Underlying().(*types.Basic)) {
out.WriteString("$flatten64(")
writeExpr("")
out.WriteString(")")
return
}
writeExpr("")
case 'h':
e := a[n].(ast.Expr)
if val := c.p.Types[e].Value; val != nil {
d, _ := exact.Uint64Val(val)
if c.p.TypeOf(e).Underlying().(*types.Basic).Kind() == types.Int64 {
out.WriteString(strconv.FormatInt(int64(d)>>32, 10))
//.........这里部分代码省略.........
示例6: shift
func (check *Checker) shift(x, y *operand, op token.Token) {
untypedx := isUntyped(x.typ)
// The lhs must be of integer type or be representable
// as an integer; otherwise the shift has no chance.
if !isInteger(x.typ) && (!untypedx || !representableConst(x.val, nil, UntypedInt, nil)) {
check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
x.mode = invalid
return
}
// spec: "The right operand in a shift expression must have unsigned
// integer type or be an untyped constant that can be converted to
// unsigned integer type."
switch {
case isInteger(y.typ) && isUnsigned(y.typ):
// nothing to do
case isUntyped(y.typ):
check.convertUntyped(y, Typ[UntypedInt])
if y.mode == invalid {
x.mode = invalid
return
}
default:
check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
x.mode = invalid
return
}
if x.mode == constant {
if y.mode == constant {
// rhs must be within reasonable bounds
const stupidShift = 1023 - 1 + 52 // so we can express smallestFloat64
s, ok := exact.Uint64Val(y.val)
if !ok || s > stupidShift {
check.invalidOp(y.pos(), "stupid shift count %s", y)
x.mode = invalid
return
}
// The lhs is representable as an integer but may not be an integer
// (e.g., 2.0, an untyped float) - this can only happen for untyped
// non-integer numeric constants. Correct the type so that the shift
// result is of integer type.
if !isInteger(x.typ) {
x.typ = Typ[UntypedInt]
}
x.val = exact.Shift(x.val, op, uint(s))
return
}
// non-constant shift with constant lhs
if untypedx {
// spec: "If the left operand of a non-constant shift
// expression is an untyped constant, the type of the
// constant is what it would be if the shift expression
// were replaced by its left operand alone.".
//
// Delay operand checking until we know the final type:
// The lhs expression must be in the untyped map, mark
// the entry as lhs shift operand.
info, found := check.untyped[x.expr]
assert(found)
info.isLhs = true
check.untyped[x.expr] = info
// keep x's type
x.mode = value
return
}
}
// constant rhs must be >= 0
if y.mode == constant && exact.Sign(y.val) < 0 {
check.invalidOp(y.pos(), "shift count %s must not be negative", y)
}
// non-constant shift - lhs must be an integer
if !isInteger(x.typ) {
check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
x.mode = invalid
return
}
x.mode = value
}
示例7: newValueFromConst
// newValueFromConst converts a constant value to an LLVM value.
func (fr *frame) newValueFromConst(v exact.Value, typ types.Type) *govalue {
switch {
case v == nil:
llvmtyp := fr.types.ToLLVM(typ)
return newValue(llvm.ConstNull(llvmtyp), typ)
case isString(typ):
if isUntyped(typ) {
typ = types.Typ[types.String]
}
llvmtyp := fr.types.ToLLVM(typ)
strval := exact.StringVal(v)
strlen := len(strval)
i8ptr := llvm.PointerType(llvm.Int8Type(), 0)
var ptr llvm.Value
if strlen > 0 {
init := llvm.ConstString(strval, false)
ptr = llvm.AddGlobal(fr.module.Module, init.Type(), "")
ptr.SetInitializer(init)
ptr.SetLinkage(llvm.InternalLinkage)
ptr = llvm.ConstBitCast(ptr, i8ptr)
} else {
ptr = llvm.ConstNull(i8ptr)
}
len_ := llvm.ConstInt(fr.types.inttype, uint64(strlen), false)
llvmvalue := llvm.Undef(llvmtyp)
llvmvalue = llvm.ConstInsertValue(llvmvalue, ptr, []uint32{0})
llvmvalue = llvm.ConstInsertValue(llvmvalue, len_, []uint32{1})
return newValue(llvmvalue, typ)
case isInteger(typ):
if isUntyped(typ) {
typ = types.Typ[types.Int]
}
llvmtyp := fr.types.ToLLVM(typ)
var llvmvalue llvm.Value
if isUnsigned(typ) {
v, _ := exact.Uint64Val(v)
llvmvalue = llvm.ConstInt(llvmtyp, v, false)
} else {
v, _ := exact.Int64Val(v)
llvmvalue = llvm.ConstInt(llvmtyp, uint64(v), true)
}
return newValue(llvmvalue, typ)
case isBoolean(typ):
if isUntyped(typ) {
typ = types.Typ[types.Bool]
}
return newValue(boolLLVMValue(exact.BoolVal(v)), typ)
case isFloat(typ):
if isUntyped(typ) {
typ = types.Typ[types.Float64]
}
llvmtyp := fr.types.ToLLVM(typ)
floatval, _ := exact.Float64Val(v)
llvmvalue := llvm.ConstFloat(llvmtyp, floatval)
return newValue(llvmvalue, typ)
case typ == types.Typ[types.UnsafePointer]:
llvmtyp := fr.types.ToLLVM(typ)
v, _ := exact.Uint64Val(v)
llvmvalue := llvm.ConstInt(fr.types.inttype, v, false)
llvmvalue = llvm.ConstIntToPtr(llvmvalue, llvmtyp)
return newValue(llvmvalue, typ)
case isComplex(typ):
if isUntyped(typ) {
typ = types.Typ[types.Complex128]
}
llvmtyp := fr.types.ToLLVM(typ)
floattyp := llvmtyp.StructElementTypes()[0]
llvmvalue := llvm.ConstNull(llvmtyp)
realv := exact.Real(v)
imagv := exact.Imag(v)
realfloatval, _ := exact.Float64Val(realv)
imagfloatval, _ := exact.Float64Val(imagv)
llvmre := llvm.ConstFloat(floattyp, realfloatval)
llvmim := llvm.ConstFloat(floattyp, imagfloatval)
llvmvalue = llvm.ConstInsertValue(llvmvalue, llvmre, []uint32{0})
llvmvalue = llvm.ConstInsertValue(llvmvalue, llvmim, []uint32{1})
return newValue(llvmvalue, typ)
}
// Special case for string -> [](byte|rune)
if u, ok := typ.Underlying().(*types.Slice); ok && isInteger(u.Elem()) {
if v.Kind() == exact.String {
strval := fr.newValueFromConst(v, types.Typ[types.String])
return fr.convert(strval, typ)
}
}
panic(fmt.Sprintf("unhandled: t=%s(%T), v=%v(%T)", typ, typ, v, v))
}