本文整理汇总了Golang中go/types.Object.Pkg方法的典型用法代码示例。如果您正苦于以下问题:Golang Object.Pkg方法的具体用法?Golang Object.Pkg怎么用?Golang Object.Pkg使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类go/types.Object
的用法示例。
在下文中一共展示了Object.Pkg方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: getFullName
//getFullName is returning unique name of obj.
func getFullName(obj types.Object, ctx *getDefinitionsContext, isType bool) string {
if obj == nil {
return ""
}
if isType {
return obj.Type().String()
}
result := ""
switch obj.(type) {
case *types.Func:
f := obj.(*types.Func)
r := strings.NewReplacer("(", "", "*", "", ")", "")
result = r.Replace(f.FullName())
default:
if obj.Pkg() != nil {
result += obj.Pkg().Path()
result += "."
}
if packageName, ok := ctx.structs[posToStr(ctx.fset, obj.Pos())]; ok {
result += packageName
result += "."
}
result += obj.Name()
}
return result
}
示例2: formatMember
func formatMember(obj types.Object, maxname int) string {
qualifier := types.RelativeTo(obj.Pkg())
var buf bytes.Buffer
fmt.Fprintf(&buf, "%-5s %-*s", tokenOf(obj), maxname, obj.Name())
switch obj := obj.(type) {
case *types.Const:
fmt.Fprintf(&buf, " %s = %s", types.TypeString(obj.Type(), qualifier), obj.Val().String())
case *types.Func:
fmt.Fprintf(&buf, " %s", types.TypeString(obj.Type(), qualifier))
case *types.TypeName:
// Abbreviate long aggregate type names.
var abbrev string
switch t := obj.Type().Underlying().(type) {
case *types.Interface:
if t.NumMethods() > 1 {
abbrev = "interface{...}"
}
case *types.Struct:
if t.NumFields() > 1 {
abbrev = "struct{...}"
}
}
if abbrev == "" {
fmt.Fprintf(&buf, " %s", types.TypeString(obj.Type().Underlying(), qualifier))
} else {
fmt.Fprintf(&buf, " %s", abbrev)
}
case *types.Var:
fmt.Fprintf(&buf, " %s", types.TypeString(obj.Type(), qualifier))
}
return buf.String()
}
示例3: checkSelections
// checkSelection checks that all uses and selections that resolve to
// the specified object would continue to do so after the renaming.
func (r *renamer) checkSelections(from types.Object) {
for pkg, info := range r.packages {
if id := someUse(info, from); id != nil {
if !r.checkExport(id, pkg, from) {
return
}
}
for syntax, sel := range info.Selections {
// There may be extant selections of only the old
// name or only the new name, so we must check both.
// (If neither, the renaming is sound.)
//
// In both cases, we wish to compare the lengths
// of the implicit field path (Selection.Index)
// to see if the renaming would change it.
//
// If a selection that resolves to 'from', when renamed,
// would yield a path of the same or shorter length,
// this indicates ambiguity or a changed referent,
// analogous to same- or sub-block lexical conflict.
//
// If a selection using the name 'to' would
// yield a path of the same or shorter length,
// this indicates ambiguity or shadowing,
// analogous to same- or super-block lexical conflict.
// TODO(adonovan): fix: derive from Types[syntax.X].Mode
// TODO(adonovan): test with pointer, value, addressable value.
isAddressable := true
if sel.Obj() == from {
if obj, indices, _ := types.LookupFieldOrMethod(sel.Recv(), isAddressable, from.Pkg(), r.to); obj != nil {
// Renaming this existing selection of
// 'from' may block access to an existing
// type member named 'to'.
delta := len(indices) - len(sel.Index())
if delta > 0 {
continue // no ambiguity
}
r.selectionConflict(from, delta, syntax, obj)
return
}
} else if sel.Obj().Name() == r.to {
if obj, indices, _ := types.LookupFieldOrMethod(sel.Recv(), isAddressable, from.Pkg(), from.Name()); obj == from {
// Renaming 'from' may cause this existing
// selection of the name 'to' to change
// its meaning.
delta := len(indices) - len(sel.Index())
if delta > 0 {
continue // no ambiguity
}
r.selectionConflict(from, -delta, syntax, sel.Obj())
return
}
}
}
}
}
示例4: createDef
func createDef(obj types.Object, ident *ast.Ident, ctx *getDefinitionsContext, isType bool) *Definition {
fullName := getFullName(obj, ctx, isType)
if def, ok := ctx.defs[fullName]; ok {
return def
}
def := new(Definition)
def.Name = fullName
def.Pkg = obj.Pkg()
def.IsExported = obj.Exported()
def.TypeOf = reflect.TypeOf(obj)
def.SimpleName = obj.Name()
def.Usages = make([]*Usage, 0)
def.InterfacesDefs = make([]*Definition, 0)
if ident != nil {
position := ctx.fset.Position(ident.Pos())
def.File = position.Filename
def.Line = position.Line
def.Offset = position.Offset
def.Col = position.Column
}
if !types.IsInterface(obj.Type()) {
fillInterfaces(def, obj, ctx)
}
ctx.defs[def.Name] = def
logDefinition(def, obj, ident, ctx)
return def
}
示例5: checkInLocalScope
func (r *renamer) checkInLocalScope(from types.Object) {
info := r.packages[from.Pkg()]
// Is this object an implicit local var for a type switch?
// Each case has its own var, whose position is the decl of y,
// but Ident in that decl does not appear in the Uses map.
//
// switch y := x.(type) { // Defs[Ident(y)] is undefined
// case int: print(y) // Implicits[CaseClause(int)] = Var(y_int)
// case string: print(y) // Implicits[CaseClause(string)] = Var(y_string)
// }
//
var isCaseVar bool
for syntax, obj := range info.Implicits {
if _, ok := syntax.(*ast.CaseClause); ok && obj.Pos() == from.Pos() {
isCaseVar = true
r.check(obj)
}
}
r.checkInLexicalScope(from, info)
// Finally, if this was a type switch, change the variable y.
if isCaseVar {
_, path, _ := r.iprog.PathEnclosingInterval(from.Pos(), from.Pos())
path[0].(*ast.Ident).Name = r.to // path is [Ident AssignStmt TypeSwitchStmt...]
}
}
示例6: appendObject
func (b *candidateCollector) appendObject(obj types.Object) {
// TODO(mdempsky): Change this to true.
const proposeBuiltins = false
if obj.Pkg() != b.localpkg {
if obj.Parent() == types.Universe {
if !proposeBuiltins {
return
}
} else if !obj.Exported() {
return
}
}
// TODO(mdempsky): Reconsider this functionality.
if b.filter != nil && !b.filter(obj) {
return
}
if b.filter != nil || strings.HasPrefix(obj.Name(), b.partial) {
b.exact = append(b.exact, obj)
} else if strings.HasPrefix(strings.ToLower(obj.Name()), strings.ToLower(b.partial)) {
b.badcase = append(b.badcase, obj)
}
}
示例7: checkInPackageBlock
// checkInPackageBlock performs safety checks for renames of
// func/var/const/type objects in the package block.
func (r *renamer) checkInPackageBlock(from types.Object) {
// Check that there are no references to the name from another
// package if the renaming would make it unexported.
if ast.IsExported(from.Name()) && !ast.IsExported(r.to) {
for pkg, info := range r.packages {
if pkg == from.Pkg() {
continue
}
if id := someUse(info, from); id != nil &&
!r.checkExport(id, pkg, from) {
break
}
}
}
info := r.packages[from.Pkg()]
// Check that in the package block, "init" is a function, and never referenced.
if r.to == "init" {
kind := objectKind(from)
if kind == "func" {
// Reject if intra-package references to it exist.
for id, obj := range info.Uses {
if obj == from {
r.errorf(from.Pos(),
"renaming this func %q to %q would make it a package initializer",
from.Name(), r.to)
r.errorf(id.Pos(), "\tbut references to it exist")
break
}
}
} else {
r.errorf(from.Pos(), "you cannot have a %s at package level named %q",
kind, r.to)
}
}
// Check for conflicts between package block and all file blocks.
for _, f := range info.Files {
fileScope := info.Info.Scopes[f]
b, prev := fileScope.LookupParent(r.to, token.NoPos)
if b == fileScope {
r.errorf(from.Pos(), "renaming this %s %q to %q would conflict",
objectKind(from), from.Name(), r.to)
r.errorf(prev.Pos(), "\twith this %s",
objectKind(prev))
return // since checkInPackageBlock would report redundant errors
}
}
// Check for conflicts in lexical scope.
if from.Exported() {
for _, info := range r.packages {
r.checkInLexicalScope(from, info)
}
} else {
r.checkInLexicalScope(from, info)
}
}
示例8: qualifiedName
func (p *exporter) qualifiedName(obj types.Object) {
if obj == nil {
p.string("")
return
}
p.string(obj.Name())
p.pkg(obj.Pkg(), false)
}
示例9: VName
// VName returns a VName for obj relative to that of its package.
func (pi *PackageInfo) VName(obj types.Object) *spb.VName {
sig := pi.Signature(obj)
base := pi.VNames[obj.Pkg()]
if base == nil {
return govname.ForBuiltin(sig)
}
vname := proto.Clone(base).(*spb.VName)
vname.Signature = sig
return vname
}
示例10: addSymbol
func (sym *symtab) addSymbol(obj types.Object) {
fn := types.ObjectString(obj, nil)
n := obj.Name()
pkg := obj.Pkg()
id := n
if pkg != nil {
id = pkg.Name() + "_" + n
}
switch obj.(type) {
case *types.Const:
sym.syms[fn] = &symbol{
gopkg: pkg,
goobj: obj,
kind: skConst,
id: id,
goname: n,
cgoname: "cgo_const_" + id,
cpyname: "cpy_const_" + id,
}
sym.addType(obj, obj.Type())
case *types.Var:
sym.syms[fn] = &symbol{
gopkg: pkg,
goobj: obj,
kind: skVar,
id: id,
goname: n,
cgoname: "cgo_var_" + id,
cpyname: "cpy_var_" + id,
}
sym.addType(obj, obj.Type())
case *types.Func:
sym.syms[fn] = &symbol{
gopkg: pkg,
goobj: obj,
kind: skFunc,
id: id,
goname: n,
cgoname: "cgo_func_" + id,
cpyname: "cpy_func_" + id,
}
sig := obj.Type().Underlying().(*types.Signature)
sym.processTuple(sig.Params())
sym.processTuple(sig.Results())
case *types.TypeName:
sym.addType(obj, obj.Type())
default:
panic(fmt.Errorf("gopy: handled object [%#v]", obj))
}
}
示例11: declare
func (p *importer) declare(obj types.Object) {
pkg := obj.Pkg()
if alt := pkg.Scope().Insert(obj); alt != nil {
// This could only trigger if we import a (non-type) object a second time.
// This should never happen because 1) we only import a package once; and
// b) we ignore compiler-specific export data which may contain functions
// whose inlined function bodies refer to other functions that were already
// imported.
// (See also the comment in cmd/compile/internal/gc/bimport.go importer.obj,
// switch case importing functions).
panic(fmt.Sprintf("%s already declared", alt.Name()))
}
}
示例12: classify
// classify classifies objects by how far
// we have to look to find references to them.
func classify(obj types.Object) (global, pkglevel bool) {
if obj.Exported() {
if obj.Parent() == nil {
// selectable object (field or method)
return true, false
}
if obj.Parent() == obj.Pkg().Scope() {
// lexical object (package-level var/const/func/type)
return true, true
}
}
// object with unexported named or defined in local scope
return false, false
}
示例13: checkExport
func (r *renamer) checkExport(id *ast.Ident, pkg *types.Package, from types.Object) bool {
// Reject cross-package references if r.to is unexported.
// (Such references may be qualified identifiers or field/method
// selections.)
if !ast.IsExported(r.to) && pkg != from.Pkg() {
r.errorf(from.Pos(),
"renaming this %s %q to %q would make it unexported",
objectKind(from), from.Name(), r.to)
r.errorf(id.Pos(), "\tbreaking references from packages such as %q",
pkg.Path())
return false
}
return true
}
示例14: getKey
func getKey(obj types.Object) object {
if obj == nil {
return object{}
}
pkg := obj.Pkg()
pkgPath := ""
if pkg != nil {
pkgPath = pkg.Path()
}
return object{
pkgPath: pkgPath,
name: obj.Name(),
}
}
示例15: declare
func (p *importer) declare(obj types.Object) {
pkg := obj.Pkg()
if alt := pkg.Scope().Insert(obj); alt != nil {
// This can only trigger if we import a (non-type) object a second time.
// Excluding aliases, this cannot happen because 1) we only import a package
// once; and b) we ignore compiler-specific export data which may contain
// functions whose inlined function bodies refer to other functions that
// were already imported.
// However, aliases require reexporting the original object, so we need
// to allow it (see also the comment in cmd/compile/internal/gc/bimport.go,
// method importer.obj, switch case importing functions).
// Note that the original itself cannot be an alias.
if !sameObj(obj, alt) {
errorf("inconsistent import:\n\t%v\npreviously imported as:\n\t%v\n", obj, alt)
}
}
}