本文整理汇总了Golang中go/types.Func.Pkg方法的典型用法代码示例。如果您正苦于以下问题:Golang Func.Pkg方法的具体用法?Golang Func.Pkg怎么用?Golang Func.Pkg使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类go/types.Func
的用法示例。
在下文中一共展示了Func.Pkg方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: findMethod
func findMethod(prog *ssa.Program, meth *types.Func, typ types.Type, infer *TypeInfer) *ssa.Function {
if meth != nil {
return prog.LookupMethod(typ, meth.Pkg(), meth.Name())
}
infer.Logger.Fatal(ErrMethodNotFound)
return nil
}
示例2: GoProto
func GoProto(fn *types.Func) (string, string, string) {
pkgname := "package " + fn.Pkg().Name() + "\n"
imports := ""
signature := fn.Type().(*types.Signature)
sig := strings.TrimPrefix(signature.String(), "func(")
fnproto := "func " + fn.Name() + "(" + sig + "\n"
return pkgname, imports, fnproto
}
示例3: lookupMethod
// lookupMethod returns the method set for type typ, which may be one
// of the interpreter's fake types.
func lookupMethod(i *interpreter, typ types.Type, meth *types.Func) *ssa.Function {
switch typ {
case rtypeType:
return i.rtypeMethods[meth.Id()]
case errorType:
return i.errorMethods[meth.Id()]
}
return i.prog.LookupMethod(typ, meth.Pkg(), meth.Name())
}
示例4: method
func (p *exporter) method(m *types.Func) {
sig := m.Type().(*types.Signature)
if sig.Recv() == nil {
log.Fatalf("gcimporter: method expected")
}
p.pos(m)
p.string(m.Name())
if m.Name() != "_" && !ast.IsExported(m.Name()) {
p.pkg(m.Pkg(), false)
}
// interface method; no need to encode receiver.
p.paramList(sig.Params(), sig.Variadic())
p.paramList(sig.Results(), false)
}
示例5: implements
//.........这里部分代码省略.........
}
method = obj
T = recv.Type()
}
}
case actionType:
T = qpos.info.TypeOf(path[0].(ast.Expr))
}
if T == nil {
return fmt.Errorf("no type or method here")
}
// Find all named types, even local types (which can have
// methods via promotion) and the built-in "error".
var allNamed []types.Type
for _, info := range lprog.AllPackages {
for _, obj := range info.Defs {
if obj, ok := obj.(*types.TypeName); ok {
allNamed = append(allNamed, obj.Type())
}
}
}
allNamed = append(allNamed, types.Universe.Lookup("error").Type())
var msets typeutil.MethodSetCache
// Test each named type.
var to, from, fromPtr []types.Type
for _, U := range allNamed {
if isInterface(T) {
if msets.MethodSet(T).Len() == 0 {
continue // empty interface
}
if isInterface(U) {
if msets.MethodSet(U).Len() == 0 {
continue // empty interface
}
// T interface, U interface
if !types.Identical(T, U) {
if types.AssignableTo(U, T) {
to = append(to, U)
}
if types.AssignableTo(T, U) {
from = append(from, U)
}
}
} else {
// T interface, U concrete
if types.AssignableTo(U, T) {
to = append(to, U)
} else if pU := types.NewPointer(U); types.AssignableTo(pU, T) {
to = append(to, pU)
}
}
} else if isInterface(U) {
if msets.MethodSet(U).Len() == 0 {
continue // empty interface
}
// T concrete, U interface
if types.AssignableTo(T, U) {
from = append(from, U)
} else if pT := types.NewPointer(T); types.AssignableTo(pT, U) {
fromPtr = append(fromPtr, U)
}
}
}
var pos interface{} = qpos
if nt, ok := deref(T).(*types.Named); ok {
pos = nt.Obj()
}
// Sort types (arbitrarily) to ensure test determinism.
sort.Sort(typesByString(to))
sort.Sort(typesByString(from))
sort.Sort(typesByString(fromPtr))
var toMethod, fromMethod, fromPtrMethod []*types.Selection // contain nils
if method != nil {
for _, t := range to {
toMethod = append(toMethod,
types.NewMethodSet(t).Lookup(method.Pkg(), method.Name()))
}
for _, t := range from {
fromMethod = append(fromMethod,
types.NewMethodSet(t).Lookup(method.Pkg(), method.Name()))
}
for _, t := range fromPtr {
fromPtrMethod = append(fromPtrMethod,
types.NewMethodSet(t).Lookup(method.Pkg(), method.Name()))
}
}
q.result = &implementsResult{
qpos, T, pos, to, from, fromPtr, method, toMethod, fromMethod, fromPtrMethod,
}
return nil
}
示例6: checkMethod
// checkMethod performs safety checks for renaming a method.
// There are three hazards:
// - declaration conflicts
// - selection ambiguity/changes
// - entailed renamings of assignable concrete/interface types.
// We reject renamings initiated at concrete methods if it would
// change the assignability relation. For renamings of abstract
// methods, we rename all methods transitively coupled to it via
// assignability.
func (r *renamer) checkMethod(from *types.Func) {
// e.g. error.Error
if from.Pkg() == nil {
r.errorf(from.Pos(), "you cannot rename built-in method %s", from)
return
}
// ASSIGNABILITY: We reject renamings of concrete methods that
// would break a 'satisfy' constraint; but renamings of abstract
// methods are allowed to proceed, and we rename affected
// concrete and abstract methods as necessary. It is the
// initial method that determines the policy.
// Check for conflict at point of declaration.
// Check to ensure preservation of assignability requirements.
R := recv(from).Type()
if isInterface(R) {
// Abstract method
// declaration
prev, _, _ := types.LookupFieldOrMethod(R, false, from.Pkg(), r.to)
if prev != nil {
r.errorf(from.Pos(), "renaming this interface method %q to %q",
from.Name(), r.to)
r.errorf(prev.Pos(), "\twould conflict with this method")
return
}
// Check all interfaces that embed this one for
// declaration conflicts too.
for _, info := range r.packages {
// Start with named interface types (better errors)
for _, obj := range info.Defs {
if obj, ok := obj.(*types.TypeName); ok && isInterface(obj.Type()) {
f, _, _ := types.LookupFieldOrMethod(
obj.Type(), false, from.Pkg(), from.Name())
if f == nil {
continue
}
t, _, _ := types.LookupFieldOrMethod(
obj.Type(), false, from.Pkg(), r.to)
if t == nil {
continue
}
r.errorf(from.Pos(), "renaming this interface method %q to %q",
from.Name(), r.to)
r.errorf(t.Pos(), "\twould conflict with this method")
r.errorf(obj.Pos(), "\tin named interface type %q", obj.Name())
}
}
// Now look at all literal interface types (includes named ones again).
for e, tv := range info.Types {
if e, ok := e.(*ast.InterfaceType); ok {
_ = e
_ = tv.Type.(*types.Interface)
// TODO(adonovan): implement same check as above.
}
}
}
// assignability
//
// Find the set of concrete or abstract methods directly
// coupled to abstract method 'from' by some
// satisfy.Constraint, and rename them too.
for key := range r.satisfy() {
// key = (lhs, rhs) where lhs is always an interface.
lsel := r.msets.MethodSet(key.LHS).Lookup(from.Pkg(), from.Name())
if lsel == nil {
continue
}
rmethods := r.msets.MethodSet(key.RHS)
rsel := rmethods.Lookup(from.Pkg(), from.Name())
if rsel == nil {
continue
}
// If both sides have a method of this name,
// and one of them is m, the other must be coupled.
var coupled *types.Func
switch from {
case lsel.Obj():
coupled = rsel.Obj().(*types.Func)
case rsel.Obj():
coupled = lsel.Obj().(*types.Func)
default:
continue
}
//.........这里部分代码省略.........
示例7: findMethod
func findMethod(prog *ssa.Program, meth *types.Func, typ types.Type) *ssa.Function {
if meth != nil {
fmt.Fprintf(os.Stderr, " ^ finding method for type: %s pkg: %s name: %s\n", typ.String(), meth.Pkg().Name(), meth.Name())
}
return prog.LookupMethod(typ, meth.Pkg(), meth.Name())
}