本文整理汇总了Golang中go/constant.Shift函数的典型用法代码示例。如果您正苦于以下问题:Golang Shift函数的具体用法?Golang Shift怎么用?Golang Shift使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了Shift函数的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: parseNumber
// number = int_lit [ "p" int_lit ] .
//
func (p *parser) parseNumber() (typ *types.Basic, val exact.Value) {
// mantissa
mant := exact.MakeFromLiteral(p.parseInt(), token.INT, 0)
if mant == nil {
panic("invalid mantissa")
}
if p.lit == "p" {
// exponent (base 2)
p.next()
exp, err := strconv.ParseInt(p.parseInt(), 10, 0)
if err != nil {
p.error(err)
}
if exp < 0 {
denom := exact.MakeInt64(1)
denom = exact.Shift(denom, token.SHL, uint(-exp))
typ = types.Typ[types.UntypedFloat]
val = exact.BinaryOp(mant, token.QUO, denom)
return
}
if exp > 0 {
mant = exact.Shift(mant, token.SHL, uint(exp))
}
typ = types.Typ[types.UntypedFloat]
val = mant
return
}
typ = types.Typ[types.UntypedInt]
val = mant
return
}
示例2: ufloat
func (p *importer) ufloat() constant.Value {
exp := p.int()
x := constant.MakeFromBytes(p.bytes())
switch {
case exp < 0:
d := constant.Shift(constant.MakeInt64(1), token.SHL, uint(-exp))
x = constant.BinaryOp(x, token.QUO, d)
case exp > 0:
x = constant.Shift(x, token.SHL, uint(exp))
}
return x
}
示例3: VisitPost
func (constantFolderVisitor) VisitPost(expr Expr) (retExpr Expr) {
defer func() {
// go/constant operations can panic for a number of reasons (like division
// by zero), but it's difficult to preemptively detect when they will. It's
// safest to just recover here without folding the expression and let
// normalization or evaluation deal with error handling.
if r := recover(); r != nil {
retExpr = expr
}
}()
switch t := expr.(type) {
case *ParenExpr:
if cv, ok := t.Expr.(*NumVal); ok {
return cv
}
case *UnaryExpr:
if cv, ok := t.Expr.(*NumVal); ok {
if token, ok := unaryOpToToken[t.Operator]; ok {
return &NumVal{Value: constant.UnaryOp(token, cv.Value, 0)}
}
if token, ok := unaryOpToTokenIntOnly[t.Operator]; ok {
if intVal, ok := cv.asConstantInt(); ok {
return &NumVal{Value: constant.UnaryOp(token, intVal, 0)}
}
}
}
case *BinaryExpr:
l, okL := t.Left.(*NumVal)
r, okR := t.Right.(*NumVal)
if okL && okR {
if token, ok := binaryOpToToken[t.Operator]; ok {
return &NumVal{Value: constant.BinaryOp(l.Value, token, r.Value)}
}
if token, ok := binaryOpToTokenIntOnly[t.Operator]; ok {
if lInt, ok := l.asConstantInt(); ok {
if rInt, ok := r.asConstantInt(); ok {
return &NumVal{Value: constant.BinaryOp(lInt, token, rInt)}
}
}
}
if token, ok := binaryShiftOpToToken[t.Operator]; ok {
if lInt, ok := l.asConstantInt(); ok {
if rInt64, err := r.asInt64(); err == nil && rInt64 >= 0 {
return &NumVal{Value: constant.Shift(lInt, token, uint(rInt64))}
}
}
}
}
case *ComparisonExpr:
l, okL := t.Left.(*NumVal)
r, okR := t.Right.(*NumVal)
if okL && okR {
if token, ok := comparisonOpToToken[t.Operator]; ok {
return MakeDBool(DBool(constant.Compare(l.Value, token, r.Value)))
}
}
}
return expr
}
示例4: float
func (p *importer) float() constant.Value {
sign := p.int()
if sign == 0 {
return constant.MakeInt64(0)
}
exp := p.int()
mant := []byte(p.string()) // big endian
// remove leading 0's if any
for len(mant) > 0 && mant[0] == 0 {
mant = mant[1:]
}
// convert to little endian
// TODO(gri) go/constant should have a more direct conversion function
// (e.g., once it supports a big.Float based implementation)
for i, j := 0, len(mant)-1; i < j; i, j = i+1, j-1 {
mant[i], mant[j] = mant[j], mant[i]
}
// adjust exponent (constant.MakeFromBytes creates an integer value,
// but mant represents the mantissa bits such that 0.5 <= mant < 1.0)
exp -= len(mant) << 3
if len(mant) > 0 {
for msd := mant[len(mant)-1]; msd&0x80 == 0; msd <<= 1 {
exp++
}
}
x := constant.MakeFromBytes(mant)
switch {
case exp < 0:
d := constant.Shift(constant.MakeInt64(1), token.SHL, uint(-exp))
x = constant.BinaryOp(x, token.QUO, d)
case exp > 0:
x = constant.Shift(x, token.SHL, uint(exp))
}
if sign < 0 {
x = constant.UnaryOp(token.SUB, x, 0)
}
return x
}
示例5: constantBinaryOp
func constantBinaryOp(op token.Token, x, y constant.Value) (r constant.Value, err error) {
defer func() {
if ierr := recover(); ierr != nil {
err = fmt.Errorf("%v", ierr)
}
}()
switch op {
case token.SHL, token.SHR:
n, _ := constant.Uint64Val(y)
r = constant.Shift(x, op, uint(n))
default:
r = constant.BinaryOp(x, op, y)
}
return
}
示例6: shift
func (check *Checker) shift(x, y *operand, e *ast.BinaryExpr, op token.Token) {
untypedx := isUntyped(x.typ)
var xval constant.Value
if x.mode == constant_ {
xval = constant.ToInt(x.val)
}
if isInteger(x.typ) || untypedx && xval != nil && xval.Kind() == constant.Int {
// The lhs is of integer type or an untyped constant representable
// as an integer. Nothing to do.
} else {
// shift has no chance
check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
x.mode = invalid
return
}
// spec: "The right operand in a shift expression must have unsigned
// integer type or be an untyped constant that can be converted to
// unsigned integer type."
switch {
case isUnsigned(y.typ):
// nothing to do
case isUntyped(y.typ):
check.convertUntyped(y, Typ[UntypedInt])
if y.mode == invalid {
x.mode = invalid
return
}
default:
check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
x.mode = invalid
return
}
if x.mode == constant_ {
if y.mode == constant_ {
// rhs must be an integer value
yval := constant.ToInt(y.val)
if yval.Kind() != constant.Int {
check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
x.mode = invalid
return
}
// rhs must be within reasonable bounds
const shiftBound = 1023 - 1 + 52 // so we can express smallestFloat64
s, ok := constant.Uint64Val(yval)
if !ok || s > shiftBound {
check.invalidOp(y.pos(), "invalid shift count %s", y)
x.mode = invalid
return
}
// The lhs is representable as an integer but may not be an integer
// (e.g., 2.0, an untyped float) - this can only happen for untyped
// non-integer numeric constants. Correct the type so that the shift
// result is of integer type.
if !isInteger(x.typ) {
x.typ = Typ[UntypedInt]
}
// x is a constant so xval != nil and it must be of Int kind.
x.val = constant.Shift(xval, op, uint(s))
// Typed constants must be representable in
// their type after each constant operation.
if isTyped(x.typ) {
if e != nil {
x.expr = e // for better error message
}
check.representable(x, x.typ.Underlying().(*Basic))
}
return
}
// non-constant shift with constant lhs
if untypedx {
// spec: "If the left operand of a non-constant shift
// expression is an untyped constant, the type of the
// constant is what it would be if the shift expression
// were replaced by its left operand alone.".
//
// Delay operand checking until we know the final type
// by marking the lhs expression as lhs shift operand.
//
// Usually (in correct programs), the lhs expression
// is in the untyped map. However, it is possible to
// create incorrect programs where the same expression
// is evaluated twice (via a declaration cycle) such
// that the lhs expression type is determined in the
// first round and thus deleted from the map, and then
// not found in the second round (double insertion of
// the same expr node still just leads to one entry for
// that node, and it can only be deleted once).
// Be cautious and check for presence of entry.
// Example: var e, f = int(1<<""[f]) // issue 11347
if info, found := check.untyped[x.expr]; found {
info.isLhs = true
check.untyped[x.expr] = info
}
// keep x's type
x.mode = value
//.........这里部分代码省略.........
示例7: VisitPost
func (constantFolderVisitor) VisitPost(expr Expr) (retExpr Expr) {
defer func() {
// go/constant operations can panic for a number of reasons (like division
// by zero), but it's difficult to preemptively detect when they will. It's
// safest to just recover here without folding the expression and let
// normalization or evaluation deal with error handling.
if r := recover(); r != nil {
retExpr = expr
}
}()
switch t := expr.(type) {
case *ParenExpr:
switch cv := t.Expr.(type) {
case *NumVal, *StrVal:
return cv
}
case *UnaryExpr:
switch cv := t.Expr.(type) {
case *NumVal:
if token, ok := unaryOpToToken[t.Operator]; ok {
return &NumVal{Value: constant.UnaryOp(token, cv.Value, 0)}
}
if token, ok := unaryOpToTokenIntOnly[t.Operator]; ok {
if intVal, ok := cv.asConstantInt(); ok {
return &NumVal{Value: constant.UnaryOp(token, intVal, 0)}
}
}
}
case *BinaryExpr:
switch l := t.Left.(type) {
case *NumVal:
if r, ok := t.Right.(*NumVal); ok {
if token, ok := binaryOpToToken[t.Operator]; ok {
return &NumVal{Value: constant.BinaryOp(l.Value, token, r.Value)}
}
if token, ok := binaryOpToTokenIntOnly[t.Operator]; ok {
if lInt, ok := l.asConstantInt(); ok {
if rInt, ok := r.asConstantInt(); ok {
return &NumVal{Value: constant.BinaryOp(lInt, token, rInt)}
}
}
}
if token, ok := binaryShiftOpToToken[t.Operator]; ok {
if lInt, ok := l.asConstantInt(); ok {
if rInt64, err := r.asInt64(); err == nil && rInt64 >= 0 {
return &NumVal{Value: constant.Shift(lInt, token, uint(rInt64))}
}
}
}
}
case *StrVal:
if r, ok := t.Right.(*StrVal); ok {
switch t.Operator {
case Concat:
// When folding string-like constants, if either was byte-escaped,
// the result is also considered byte escaped.
return &StrVal{s: l.s + r.s, bytesEsc: l.bytesEsc || r.bytesEsc}
}
}
}
case *ComparisonExpr:
switch l := t.Left.(type) {
case *NumVal:
if r, ok := t.Right.(*NumVal); ok {
if token, ok := comparisonOpToToken[t.Operator]; ok {
return MakeDBool(DBool(constant.Compare(l.Value, token, r.Value)))
}
}
case *StrVal:
// ComparisonExpr folding for String-like constants is not significantly different
// from constant evalutation during normalization (because both should be exact,
// unlike numeric comparisons). Still, folding these comparisons when possible here
// can reduce the amount of work performed during type checking, can reduce necessary
// allocations, and maintains symmetry with numeric constants.
if r, ok := t.Right.(*StrVal); ok {
switch t.Operator {
case EQ:
return MakeDBool(DBool(l.s == r.s))
case NE:
return MakeDBool(DBool(l.s != r.s))
case LT:
return MakeDBool(DBool(l.s < r.s))
case LE:
return MakeDBool(DBool(l.s <= r.s))
case GT:
return MakeDBool(DBool(l.s > r.s))
case GE:
return MakeDBool(DBool(l.s >= r.s))
}
}
}
}
return expr
}
示例8: shift
func (check *Checker) shift(x, y *operand, op token.Token) {
untypedx := isUntyped(x.typ)
// The lhs must be of integer type or be representable
// as an integer; otherwise the shift has no chance.
if !x.isInteger() {
check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
x.mode = invalid
return
}
// spec: "The right operand in a shift expression must have unsigned
// integer type or be an untyped constant that can be converted to
// unsigned integer type."
switch {
case isInteger(y.typ) && isUnsigned(y.typ):
// nothing to do
case isUntyped(y.typ):
check.convertUntyped(y, Typ[UntypedInt])
if y.mode == invalid {
x.mode = invalid
return
}
default:
check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
x.mode = invalid
return
}
if x.mode == constant {
if y.mode == constant {
// rhs must be an integer value
if !y.isInteger() {
check.invalidOp(y.pos(), "shift count %s must be unsigned integer", y)
x.mode = invalid
return
}
// rhs must be within reasonable bounds
const stupidShift = 1023 - 1 + 52 // so we can express smallestFloat64
s, ok := exact.Uint64Val(y.val)
if !ok || s > stupidShift {
check.invalidOp(y.pos(), "stupid shift count %s", y)
x.mode = invalid
return
}
// The lhs is representable as an integer but may not be an integer
// (e.g., 2.0, an untyped float) - this can only happen for untyped
// non-integer numeric constants. Correct the type so that the shift
// result is of integer type.
if !isInteger(x.typ) {
x.typ = Typ[UntypedInt]
}
x.val = exact.Shift(x.val, op, uint(s))
return
}
// non-constant shift with constant lhs
if untypedx {
// spec: "If the left operand of a non-constant shift
// expression is an untyped constant, the type of the
// constant is what it would be if the shift expression
// were replaced by its left operand alone.".
//
// Delay operand checking until we know the final type:
// The lhs expression must be in the untyped map, mark
// the entry as lhs shift operand.
info, found := check.untyped[x.expr]
assert(found)
info.isLhs = true
check.untyped[x.expr] = info
// keep x's type
x.mode = value
return
}
}
// constant rhs must be >= 0
if y.mode == constant && exact.Sign(y.val) < 0 {
check.invalidOp(y.pos(), "shift count %s must not be negative", y)
}
// non-constant shift - lhs must be an integer
if !isInteger(x.typ) {
check.invalidOp(x.pos(), "shifted operand %s must be integer", x)
x.mode = invalid
return
}
x.mode = value
}