当前位置: 首页>>代码示例>>Golang>>正文


Golang Instances.DecomposeOnAttributeValues方法代码示例

本文整理汇总了Golang中github.com/sjwhitworth/golearn/base.Instances.DecomposeOnAttributeValues方法的典型用法代码示例。如果您正苦于以下问题:Golang Instances.DecomposeOnAttributeValues方法的具体用法?Golang Instances.DecomposeOnAttributeValues怎么用?Golang Instances.DecomposeOnAttributeValues使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在github.com/sjwhitworth/golearn/base.Instances的用法示例。


在下文中一共展示了Instances.DecomposeOnAttributeValues方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。

示例1: Prune

// Prune eliminates branches which hurt accuracy
func (d *DecisionTreeNode) Prune(using *base.Instances) {
	// If you're a leaf, you're already pruned
	if d.Children == nil {
		return
	} else {
		if d.SplitAttr == nil {
			return
		}
		// Recursively prune children of this node
		sub := using.DecomposeOnAttributeValues(d.SplitAttr)
		for k := range d.Children {
			if sub[k] == nil {
				continue
			}
			d.Children[k].Prune(sub[k])
		}
	}

	// Get a baseline accuracy
	baselineAccuracy := computeAccuracy(d.Predict(using), using)

	// Speculatively remove the children and re-evaluate
	tmpChildren := d.Children
	d.Children = nil
	newAccuracy := computeAccuracy(d.Predict(using), using)

	// Keep the children removed if better, else restore
	if newAccuracy < baselineAccuracy {
		d.Children = tmpChildren
	}
}
开发者ID:24hours,项目名称:golearn,代码行数:32,代码来源:id3.go

示例2: InferID3Tree

// InferID3Tree builds a decision tree using a RuleGenerator
// from a set of Instances (implements the ID3 algorithm)
func InferID3Tree(from *base.Instances, with RuleGenerator) *DecisionTreeNode {
	// Count the number of classes at this node
	classes := from.CountClassValues()
	// If there's only one class, return a DecisionTreeLeaf with
	// the only class available
	if len(classes) == 1 {
		maxClass := ""
		for i := range classes {
			maxClass = i
		}
		ret := &DecisionTreeNode{
			LeafNode,
			nil,
			nil,
			classes,
			maxClass,
			from.GetClassAttrPtr(),
		}
		return ret
	}

	// Only have the class attribute
	maxVal := 0
	maxClass := ""
	for i := range classes {
		if classes[i] > maxVal {
			maxClass = i
			maxVal = classes[i]
		}
	}

	// If there are no more Attributes left to split on,
	// return a DecisionTreeLeaf with the majority class
	if from.GetAttributeCount() == 2 {
		ret := &DecisionTreeNode{
			LeafNode,
			nil,
			nil,
			classes,
			maxClass,
			from.GetClassAttrPtr(),
		}
		return ret
	}

	ret := &DecisionTreeNode{
		RuleNode,
		nil,
		nil,
		classes,
		maxClass,
		from.GetClassAttrPtr(),
	}

	// Generate a return structure
	// Generate the splitting attribute
	splitOnAttribute := with.GenerateSplitAttribute(from)
	if splitOnAttribute == nil {
		// Can't determine, just return what we have
		return ret
	}
	// Split the attributes based on this attribute's value
	splitInstances := from.DecomposeOnAttributeValues(splitOnAttribute)
	// Create new children from these attributes
	ret.Children = make(map[string]*DecisionTreeNode)
	for k := range splitInstances {
		newInstances := splitInstances[k]
		ret.Children[k] = InferID3Tree(newInstances, with)
	}
	ret.SplitAttr = splitOnAttribute
	return ret
}
开发者ID:24hours,项目名称:golearn,代码行数:74,代码来源:id3.go


注:本文中的github.com/sjwhitworth/golearn/base.Instances.DecomposeOnAttributeValues方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。