本文整理汇总了Golang中github.com/shuLhan/tabula.ClasetInterface.GetNRow方法的典型用法代码示例。如果您正苦于以下问题:Golang ClasetInterface.GetNRow方法的具体用法?Golang ClasetInterface.GetNRow怎么用?Golang ClasetInterface.GetNRow使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类github.com/shuLhan/tabula.ClasetInterface
的用法示例。
在下文中一共展示了ClasetInterface.GetNRow方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: Initialize
//
// Initialize will check forest inputs and set it to default values if invalid.
//
// It will also calculate number of random samples for each tree using,
//
// number-of-sample * percentage-of-bootstrap
//
//
func (forest *Runtime) Initialize(samples tabula.ClasetInterface) error {
if forest.NTree <= 0 {
forest.NTree = DefNumTree
}
if forest.PercentBoot <= 0 {
forest.PercentBoot = DefPercentBoot
}
if forest.NRandomFeature <= 0 {
// Set default value to square-root of features.
ncol := samples.GetNColumn() - 1
forest.NRandomFeature = int(math.Sqrt(float64(ncol)))
}
if forest.OOBStatsFile == "" {
forest.OOBStatsFile = DefOOBStatsFile
}
if forest.PerfFile == "" {
forest.PerfFile = DefPerfFile
}
if forest.StatFile == "" {
forest.StatFile = DefStatFile
}
forest.nSubsample = int(float32(samples.GetNRow()) *
(float32(forest.PercentBoot) / 100.0))
return forest.Runtime.Initialize()
}
示例2: ClassifySet
/*
ClassifySet set the class attribute based on tree classification.
*/
func (runtime *Runtime) ClassifySet(data tabula.ClasetInterface) (e error) {
nrow := data.GetNRow()
targetAttr := data.GetClassColumn()
for i := 0; i < nrow; i++ {
class := runtime.Classify(data.GetRow(i))
_ = (*targetAttr).Records[i].SetValue(class, tabula.TString)
}
return
}
示例3: splitTreeByGain
/*
splitTreeByGain calculate the gain in all dataset, and split into two node:
left and right.
Return node with the split information.
*/
func (runtime *Runtime) splitTreeByGain(D tabula.ClasetInterface) (
node *binary.BTNode,
e error,
) {
node = &binary.BTNode{}
D.RecountMajorMinor()
// if dataset is empty return node labeled with majority classes in
// dataset.
nrow := D.GetNRow()
if nrow <= 0 {
if DEBUG >= 2 {
fmt.Printf("[cart] empty dataset (%s) : %v\n",
D.MajorityClass(), D)
}
node.Value = NodeValue{
IsLeaf: true,
Class: D.MajorityClass(),
Size: 0,
}
return node, nil
}
// if all dataset is in the same class, return node as leaf with class
// is set to that class.
single, name := D.IsInSingleClass()
if single {
if DEBUG >= 2 {
fmt.Printf("[cart] in single class (%s): %v\n", name,
D.GetColumns())
}
node.Value = NodeValue{
IsLeaf: true,
Class: name,
Size: nrow,
}
return node, nil
}
if DEBUG >= 2 {
fmt.Println("[cart] D:", D)
}
// calculate the Gini gain for each attribute.
gains := runtime.computeGain(D)
// get attribute with maximum Gini gain.
MaxGainIdx := gini.FindMaxGain(&gains)
MaxGain := gains[MaxGainIdx]
// if maxgain value is 0, use majority class as node and terminate
// the process
if MaxGain.GetMaxGainValue() == 0 {
if DEBUG >= 2 {
fmt.Println("[cart] max gain 0 with target",
D.GetClassAsStrings(),
" and majority class is ", D.MajorityClass())
}
node.Value = NodeValue{
IsLeaf: true,
Class: D.MajorityClass(),
Size: 0,
}
return node, nil
}
// using the sorted index in MaxGain, sort all field in dataset
tabula.SortColumnsByIndex(D, MaxGain.SortedIndex)
if DEBUG >= 2 {
fmt.Println("[cart] maxgain:", MaxGain)
}
// Now that we have attribute with max gain in MaxGainIdx, and their
// gain dan partition value in Gains[MaxGainIdx] and
// GetMaxPartValue(), we split the dataset based on type of max-gain
// attribute.
// If its continuous, split the attribute using numeric value.
// If its discrete, split the attribute using subset (partition) of
// nominal values.
var splitV interface{}
if MaxGain.IsContinu {
splitV = MaxGain.GetMaxPartGainValue()
} else {
attrPartV := MaxGain.GetMaxPartGainValue()
attrSubV := attrPartV.(tekstus.ListStrings)
splitV = attrSubV[0].Normalize()
}
//.........这里部分代码省略.........