本文整理汇总了Golang中github.com/gonum/blas/blas64.Implementation函数的典型用法代码示例。如果您正苦于以下问题:Golang Implementation函数的具体用法?Golang Implementation怎么用?Golang Implementation使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了Implementation函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: Drscl
// Drscl multiplies the vector x by 1/a being careful to avoid overflow or
// underflow where possible.
func (impl Implementation) Drscl(n int, a float64, x []float64, incX int) {
checkVector(n, x, incX)
bi := blas64.Implementation()
cden := a
cnum := 1.0
smlnum := dlamchS
bignum := 1 / smlnum
for {
cden1 := cden * smlnum
cnum1 := cnum / bignum
var mul float64
var done bool
switch {
case cnum != 0 && math.Abs(cden1) > math.Abs(cnum):
mul = smlnum
done = false
cden = cden1
case math.Abs(cnum1) > math.Abs(cden):
mul = bignum
done = false
cnum = cnum1
default:
mul = cnum / cden
done = true
}
bi.Dscal(n, mul, x, incX)
if done {
break
}
}
}
示例2: Dgetrs
// Dgetrs solves a system of equations using an LU factorization.
// The system of equations solved is
// A * X = B if trans == blas.Trans
// A^T * X = B if trans == blas.NoTrans
// A is a general n×n matrix with stride lda. B is a general matrix of size n×nrhs.
//
// On entry b contains the elements of the matrix B. On exit, b contains the
// elements of X, the solution to the system of equations.
//
// a and ipiv contain the LU factorization of A and the permutation indices as
// computed by Dgetrf. ipiv is zero-indexed.
func (impl Implementation) Dgetrs(trans blas.Transpose, n, nrhs int, a []float64, lda int, ipiv []int, b []float64, ldb int) {
checkMatrix(n, n, a, lda)
checkMatrix(n, nrhs, b, ldb)
if len(ipiv) < n {
panic(badIpiv)
}
if n == 0 || nrhs == 0 {
return
}
if trans != blas.Trans && trans != blas.NoTrans {
panic(badTrans)
}
bi := blas64.Implementation()
if trans == blas.NoTrans {
// Solve A * X = B.
impl.Dlaswp(nrhs, b, ldb, 0, n-1, ipiv, 1)
// Solve L * X = B, updating b.
bi.Dtrsm(blas.Left, blas.Lower, blas.NoTrans, blas.Unit,
n, nrhs, 1, a, lda, b, ldb)
// Solve U * X = B, updating b.
bi.Dtrsm(blas.Left, blas.Upper, blas.NoTrans, blas.NonUnit,
n, nrhs, 1, a, lda, b, ldb)
return
}
// Solve A^T * X = B.
// Solve U^T * X = B, updating b.
bi.Dtrsm(blas.Left, blas.Upper, blas.Trans, blas.NonUnit,
n, nrhs, 1, a, lda, b, ldb)
// Solve L^T * X = B, updating b.
bi.Dtrsm(blas.Left, blas.Lower, blas.Trans, blas.Unit,
n, nrhs, 1, a, lda, b, ldb)
impl.Dlaswp(nrhs, b, ldb, 0, n-1, ipiv, -1)
}
示例3: Dlarf
// Dlarf applies an elementary reflector to a general rectangular matrix c.
// This computes
// c = h * c if side == Left
// c = c * h if side == right
// where
// h = 1 - tau * v * v^T
// and c is an m * n matrix.
//
// work is temporary storage of length at least m if side == Left and at least
// n if side == Right. This function will panic if this length requirement is not met.
//
// Dlarf is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlarf(side blas.Side, m, n int, v []float64, incv int, tau float64, c []float64, ldc int, work []float64) {
applyleft := side == blas.Left
if (applyleft && len(work) < n) || (!applyleft && len(work) < m) {
panic(badWork)
}
checkMatrix(m, n, c, ldc)
// v has length m if applyleft and n otherwise.
lenV := n
if applyleft {
lenV = m
}
checkVector(lenV, v, incv)
lastv := 0 // last non-zero element of v
lastc := 0 // last non-zero row/column of c
if tau != 0 {
var i int
if applyleft {
lastv = m - 1
} else {
lastv = n - 1
}
if incv > 0 {
i = lastv * incv
}
// Look for the last non-zero row in v.
for lastv >= 0 && v[i] == 0 {
lastv--
i -= incv
}
if applyleft {
// Scan for the last non-zero column in C[0:lastv, :]
lastc = impl.Iladlc(lastv+1, n, c, ldc)
} else {
// Scan for the last non-zero row in C[:, 0:lastv]
lastc = impl.Iladlr(m, lastv+1, c, ldc)
}
}
if lastv == -1 || lastc == -1 {
return
}
// Sometimes 1-indexing is nicer ...
bi := blas64.Implementation()
if applyleft {
// Form H * C
// w[0:lastc+1] = c[1:lastv+1, 1:lastc+1]^T * v[1:lastv+1,1]
bi.Dgemv(blas.Trans, lastv+1, lastc+1, 1, c, ldc, v, incv, 0, work, 1)
// c[0: lastv, 0: lastc] = c[...] - w[0:lastv, 1] * v[1:lastc, 1]^T
bi.Dger(lastv+1, lastc+1, -tau, v, incv, work, 1, c, ldc)
return
}
// Form C*H
// w[0:lastc+1,1] := c[0:lastc+1,0:lastv+1] * v[0:lastv+1,1]
bi.Dgemv(blas.NoTrans, lastc+1, lastv+1, 1, c, ldc, v, incv, 0, work, 1)
// c[0:lastc+1,0:lastv+1] = c[...] - w[0:lastc+1,0] * v[0:lastv+1,0]^T
bi.Dger(lastc+1, lastv+1, -tau, work, 1, v, incv, c, ldc)
}
示例4: Dpotrf
// Dpotrf computes the cholesky decomposition of the symmetric positive definite
// matrix a. If ul == blas.Upper, then a is stored as an upper-triangular matrix,
// and a = U U^T is stored in place into a. If ul == blas.Lower, then a = L L^T
// is computed and stored in-place into a. If a is not positive definite, false
// is returned. This is the blocked version of the algorithm.
func (impl Implementation) Dpotrf(ul blas.Uplo, n int, a []float64, lda int) (ok bool) {
bi := blas64.Implementation()
if ul != blas.Upper && ul != blas.Lower {
panic(badUplo)
}
if n < 0 {
panic(nLT0)
}
if lda < n {
panic(badLdA)
}
if n == 0 {
return true
}
nb := impl.Ilaenv(1, "DPOTRF", string(ul), n, -1, -1, -1)
if n <= nb {
return impl.Dpotf2(ul, n, a, lda)
}
if ul == blas.Upper {
for j := 0; j < n; j += nb {
jb := min(nb, n-j)
bi.Dsyrk(blas.Upper, blas.Trans, jb, j,
-1, a[j:], lda,
1, a[j*lda+j:], lda)
ok = impl.Dpotf2(blas.Upper, jb, a[j*lda+j:], lda)
if !ok {
return ok
}
if j+jb < n {
bi.Dgemm(blas.Trans, blas.NoTrans, jb, n-j-jb, j,
-1, a[j:], lda, a[j+jb:], lda,
1, a[j*lda+j+jb:], lda)
bi.Dtrsm(blas.Left, blas.Upper, blas.Trans, blas.NonUnit, jb, n-j-jb,
1, a[j*lda+j:], lda,
a[j*lda+j+jb:], lda)
}
}
return true
}
for j := 0; j < n; j += nb {
jb := min(nb, n-j)
bi.Dsyrk(blas.Lower, blas.NoTrans, jb, j,
-1, a[j*lda:], lda,
1, a[j*lda+j:], lda)
ok := impl.Dpotf2(blas.Lower, jb, a[j*lda+j:], lda)
if !ok {
return ok
}
if j+jb < n {
bi.Dgemm(blas.NoTrans, blas.Trans, n-j-jb, jb, j,
-1, a[(j+jb)*lda:], lda, a[j*lda:], lda,
1, a[(j+jb)*lda+j:], lda)
bi.Dtrsm(blas.Right, blas.Lower, blas.Trans, blas.NonUnit, n-j-jb, jb,
1, a[j*lda+j:], lda,
a[(j+jb)*lda+j:], lda)
}
}
return true
}
示例5: Dgecon
// Dgecon estimates the reciprocal of the condition number of the n×n matrix A
// given the LU decomposition of the matrix. The condition number computed may
// be based on the 1-norm or the ∞-norm.
//
// The slice a contains the result of the LU decomposition of A as computed by Dgetrf.
//
// anorm is the corresponding 1-norm or ∞-norm of the original matrix A.
//
// work is a temporary data slice of length at least 4*n and Dgecon will panic otherwise.
//
// iwork is a temporary data slice of length at least n and Dgecon will panic otherwise.
func (impl Implementation) Dgecon(norm lapack.MatrixNorm, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64 {
checkMatrix(n, n, a, lda)
if norm != lapack.MaxColumnSum && norm != lapack.MaxRowSum {
panic(badNorm)
}
if len(work) < 4*n {
panic(badWork)
}
if len(iwork) < n {
panic(badWork)
}
if n == 0 {
return 1
} else if anorm == 0 {
return 0
}
bi := blas64.Implementation()
var rcond, ainvnm float64
var kase int
var normin bool
isave := new([3]int)
onenrm := norm == lapack.MaxColumnSum
smlnum := dlamchS
kase1 := 2
if onenrm {
kase1 = 1
}
for {
ainvnm, kase = impl.Dlacn2(n, work[n:], work, iwork, ainvnm, kase, isave)
if kase == 0 {
if ainvnm != 0 {
rcond = (1 / ainvnm) / anorm
}
return rcond
}
var sl, su float64
if kase == kase1 {
sl = impl.Dlatrs(blas.Lower, blas.NoTrans, blas.Unit, normin, n, a, lda, work, work[2*n:])
su = impl.Dlatrs(blas.Upper, blas.NoTrans, blas.NonUnit, normin, n, a, lda, work, work[3*n:])
} else {
su = impl.Dlatrs(blas.Upper, blas.Trans, blas.NonUnit, normin, n, a, lda, work, work[3*n:])
sl = impl.Dlatrs(blas.Lower, blas.Trans, blas.Unit, normin, n, a, lda, work, work[2*n:])
}
scale := sl * su
normin = true
if scale != 1 {
ix := bi.Idamax(n, work, 1)
if scale == 0 || scale < math.Abs(work[ix])*smlnum {
return rcond
}
impl.Drscl(n, scale, work, 1)
}
}
}
示例6: Dgebak
// Dgebak updates an n×m matrix V as
// V = P D V, if side == blas.Right,
// V = P D^{-1} V, if side == blas.Left,
// where P and D are n×n permutation and scaling matrices, respectively,
// implicitly represented by job, scale, ilo and ihi as returned by Dgebal.
//
// Typically, columns of the matrix V contain the right or left (determined by
// side) eigenvectors of the balanced matrix output by Dgebal, and Dgebak forms
// the eigenvectors of the original matrix.
//
// Dgebak is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dgebak(job lapack.Job, side blas.Side, n, ilo, ihi int, scale []float64, m int, v []float64, ldv int) {
switch job {
default:
panic(badJob)
case lapack.None, lapack.Permute, lapack.Scale, lapack.PermuteScale:
}
switch side {
default:
panic(badSide)
case blas.Left, blas.Right:
}
checkMatrix(n, m, v, ldv)
switch {
case ilo < 0 || max(0, n-1) < ilo:
panic(badIlo)
case ihi < min(ilo, n-1) || n <= ihi:
panic(badIhi)
}
// Quick return if possible.
if n == 0 || m == 0 || job == lapack.None {
return
}
bi := blas64.Implementation()
if ilo != ihi && job != lapack.Permute {
// Backward balance.
if side == blas.Right {
for i := ilo; i <= ihi; i++ {
bi.Dscal(m, scale[i], v[i*ldv:], 1)
}
} else {
for i := ilo; i <= ihi; i++ {
bi.Dscal(m, 1/scale[i], v[i*ldv:], 1)
}
}
}
if job == lapack.Scale {
return
}
// Backward permutation.
for i := ilo - 1; i >= 0; i-- {
k := int(scale[i])
if k == i {
continue
}
bi.Dswap(m, v[i*ldv:], 1, v[k*ldv:], 1)
}
for i := ihi + 1; i < n; i++ {
k := int(scale[i])
if k == i {
continue
}
bi.Dswap(m, v[i*ldv:], 1, v[k*ldv:], 1)
}
}
示例7: Dpotf2
// Dpotf2 computes the cholesky decomposition of the symmetric positive definite
// matrix a. If ul == blas.Upper, then a is stored as an upper-triangular matrix,
// and a = U^T U is stored in place into a. If ul == blas.Lower, then a = L L^T
// is computed and stored in-place into a. If a is not positive definite, false
// is returned. This is the unblocked version of the algorithm.
func (Implementation) Dpotf2(ul blas.Uplo, n int, a []float64, lda int) (ok bool) {
if ul != blas.Upper && ul != blas.Lower {
panic(badUplo)
}
if n < 0 {
panic(nLT0)
}
if lda < n {
panic(badLdA)
}
if n == 0 {
return true
}
bi := blas64.Implementation()
if ul == blas.Upper {
for j := 0; j < n; j++ {
ajj := a[j*lda+j]
if j != 0 {
ajj -= bi.Ddot(j, a[j:], lda, a[j:], lda)
}
if ajj <= 0 || math.IsNaN(ajj) {
a[j*lda+j] = ajj
return false
}
ajj = math.Sqrt(ajj)
a[j*lda+j] = ajj
if j < n-1 {
bi.Dgemv(blas.Trans, j, n-j-1,
-1, a[j+1:], lda, a[j:], lda,
1, a[j*lda+j+1:], 1)
bi.Dscal(n-j-1, 1/ajj, a[j*lda+j+1:], 1)
}
}
return true
}
for j := 0; j < n; j++ {
ajj := a[j*lda+j]
if j != 0 {
ajj -= bi.Ddot(j, a[j*lda:], 1, a[j*lda:], 1)
}
if ajj <= 0 || math.IsNaN(ajj) {
a[j*lda+j] = ajj
return false
}
ajj = math.Sqrt(ajj)
a[j*lda+j] = ajj
if j < n-1 {
bi.Dgemv(blas.NoTrans, n-j-1, j,
-1, a[(j+1)*lda:], lda, a[j*lda:], 1,
1, a[(j+1)*lda+j:], lda)
bi.Dscal(n-j-1, 1/ajj, a[(j+1)*lda+j:], lda)
}
}
return true
}
示例8: Dpocon
// Dpocon estimates the reciprocal of the condition number of a positive-definite
// matrix A given the Cholesky decmposition of A. The condition number computed
// is based on the 1-norm and the ∞-norm.
//
// anorm is the 1-norm and the ∞-norm of the original matrix A.
//
// work is a temporary data slice of length at least 3*n and Dpocon will panic otherwise.
//
// iwork is a temporary data slice of length at least n and Dpocon will panic otherwise.
func (impl Implementation) Dpocon(uplo blas.Uplo, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64 {
checkMatrix(n, n, a, lda)
if uplo != blas.Upper && uplo != blas.Lower {
panic(badUplo)
}
if len(work) < 3*n {
panic(badWork)
}
if len(iwork) < n {
panic(badWork)
}
var rcond float64
if n == 0 {
return 1
}
if anorm == 0 {
return rcond
}
bi := blas64.Implementation()
var ainvnm float64
smlnum := dlamchS
upper := uplo == blas.Upper
var kase int
var normin bool
isave := new([3]int)
var sl, su float64
for {
ainvnm, kase = impl.Dlacn2(n, work[n:], work, iwork, ainvnm, kase, isave)
if kase == 0 {
if ainvnm != 0 {
rcond = (1 / ainvnm) / anorm
}
return rcond
}
if upper {
sl = impl.Dlatrs(blas.Upper, blas.Trans, blas.NonUnit, normin, n, a, lda, work, work[2*n:])
normin = true
su = impl.Dlatrs(blas.Upper, blas.NoTrans, blas.NonUnit, normin, n, a, lda, work, work[2*n:])
} else {
sl = impl.Dlatrs(blas.Lower, blas.NoTrans, blas.NonUnit, normin, n, a, lda, work, work[2*n:])
normin = true
su = impl.Dlatrs(blas.Lower, blas.Trans, blas.NonUnit, normin, n, a, lda, work, work[2*n:])
}
scale := sl * su
if scale != 1 {
ix := bi.Idamax(n, work, 1)
if scale == 0 || scale < math.Abs(work[ix])*smlnum {
return rcond
}
impl.Drscl(n, scale, work, 1)
}
}
}
示例9: DpotrfTest
func DpotrfTest(t *testing.T, impl Dpotrfer) {
rnd := rand.New(rand.NewSource(1))
bi := blas64.Implementation()
for i, test := range []struct {
n int
}{
{n: 10},
{n: 30},
{n: 63},
{n: 65},
{n: 128},
{n: 1000},
} {
n := test.n
// Construct a positive-definite symmetric matrix
base := make([]float64, n*n)
for i := range base {
base[i] = rnd.Float64()
}
a := make([]float64, len(base))
bi.Dgemm(blas.Trans, blas.NoTrans, n, n, n, 1, base, n, base, n, 0, a, n)
aCopy := make([]float64, len(a))
copy(aCopy, a)
// Test with Upper
impl.Dpotrf(blas.Upper, n, a, n)
// zero all the other elements
for i := 0; i < n; i++ {
for j := 0; j < i; j++ {
a[i*n+j] = 0
}
}
// Multiply u^T * u
ans := make([]float64, len(a))
bi.Dsyrk(blas.Upper, blas.Trans, n, n, 1, a, n, 0, ans, n)
match := true
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
if !floats.EqualWithinAbsOrRel(ans[i*n+j], aCopy[i*n+j], 1e-14, 1e-14) {
match = false
}
}
}
if !match {
//fmt.Println(aCopy)
//fmt.Println(ans)
t.Errorf("Case %v: Mismatch for upper", i)
}
}
}
示例10: Dlaswp
// Dlaswp swaps the rows k1 to k2 of a according to the indices in ipiv.
// a is a matrix with n columns and stride lda. incX is the increment for ipiv.
// k1 and k2 are zero-indexed. If incX is negative, then loops from k2 to k1
//
// Dlaswp is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlaswp(n int, a []float64, lda, k1, k2 int, ipiv []int, incX int) {
if incX != 1 && incX != -1 {
panic(absIncNotOne)
}
bi := blas64.Implementation()
if incX == 1 {
for k := k1; k <= k2; k++ {
bi.Dswap(n, a[k*lda:], 1, a[ipiv[k]*lda:], 1)
}
return
}
for k := k2; k >= k1; k-- {
bi.Dswap(n, a[k*lda:], 1, a[ipiv[k]*lda:], 1)
}
}
示例11: Dtrtri
// Dtrtri computes the inverse of a triangular matrix, storing the result in place
// into a. This is the BLAS level 3 version of the algorithm which builds upon
// Dtrti2 to operate on matrix blocks instead of only individual columns.
//
// Dtrtri will not perform the inversion if the matrix is singular, and returns
// a boolean indicating whether the inversion was successful.
func (impl Implementation) Dtrtri(uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int) (ok bool) {
checkMatrix(n, n, a, lda)
if uplo != blas.Upper && uplo != blas.Lower {
panic(badUplo)
}
if diag != blas.NonUnit && diag != blas.Unit {
panic(badDiag)
}
if n == 0 {
return false
}
nonUnit := diag == blas.NonUnit
if nonUnit {
for i := 0; i < n; i++ {
if a[i*lda+i] == 0 {
return false
}
}
}
bi := blas64.Implementation()
nb := impl.Ilaenv(1, "DTRTRI", "UD", n, -1, -1, -1)
if nb <= 1 || nb > n {
impl.Dtrti2(uplo, diag, n, a, lda)
return true
}
if uplo == blas.Upper {
for j := 0; j < n; j += nb {
jb := min(nb, n-j)
bi.Dtrmm(blas.Left, blas.Upper, blas.NoTrans, diag, j, jb, 1, a, lda, a[j:], lda)
bi.Dtrsm(blas.Right, blas.Upper, blas.NoTrans, diag, j, jb, -1, a[j*lda+j:], lda, a[j:], lda)
impl.Dtrti2(blas.Upper, diag, jb, a[j*lda+j:], lda)
}
return true
}
nn := ((n - 1) / nb) * nb
for j := nn; j >= 0; j -= nb {
jb := min(nb, n-j)
if j+jb <= n-1 {
bi.Dtrmm(blas.Left, blas.Lower, blas.NoTrans, diag, n-j-jb, jb, 1, a[(j+jb)*lda+j+jb:], lda, a[(j+jb)*lda+j:], lda)
bi.Dtrmm(blas.Right, blas.Lower, blas.NoTrans, diag, n-j-jb, jb, -1, a[j*lda+j:], lda, a[(j+jb)*lda+j:], lda)
}
impl.Dtrti2(blas.Lower, diag, jb, a[j*lda+j:], lda)
}
return true
}
示例12: Dorg2r
// Dorg2r generates an m×n matrix Q with orthonormal columns defined by the
// product of elementary reflectors as computed by Dgeqrf.
// Q = H_0 * H_1 * ... * H_{k-1}
// len(tau) >= k, 0 <= k <= n, 0 <= n <= m, len(work) >= n.
// Dorg2r will panic if these conditions are not met.
//
// Dorg2r is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dorg2r(m, n, k int, a []float64, lda int, tau []float64, work []float64) {
checkMatrix(m, n, a, lda)
if len(tau) < k {
panic(badTau)
}
if len(work) < n {
panic(badWork)
}
if k > n {
panic(kGTN)
}
if n > m {
panic(mLTN)
}
if len(work) < n {
panic(badWork)
}
if n == 0 {
return
}
bi := blas64.Implementation()
// Initialize columns k+1:n to columns of the unit matrix.
for l := 0; l < m; l++ {
for j := k; j < n; j++ {
a[l*lda+j] = 0
}
}
for j := k; j < n; j++ {
a[j*lda+j] = 1
}
for i := k - 1; i >= 0; i-- {
for i := range work {
work[i] = 0
}
if i < n-1 {
a[i*lda+i] = 1
impl.Dlarf(blas.Left, m-i, n-i-1, a[i*lda+i:], lda, tau[i], a[i*lda+i+1:], lda, work)
}
if i < m-1 {
bi.Dscal(m-i-1, -tau[i], a[(i+1)*lda+i:], lda)
}
a[i*lda+i] = 1 - tau[i]
for l := 0; l < i; l++ {
a[l*lda+i] = 0
}
}
}
示例13: Dtrtrs
// Dtrtrs solves a triangular system of the form A * X = B or A^T * X = B. Dtrtrs
// returns whether the solve completed successfully. If A is singular, no solve is performed.
func (impl Implementation) Dtrtrs(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n, nrhs int, a []float64, lda int, b []float64, ldb int) (ok bool) {
nounit := diag == blas.NonUnit
if n == 0 {
return false
}
// Check for singularity.
if nounit {
for i := 0; i < n; i++ {
if a[i*lda+i] == 0 {
return false
}
}
}
bi := blas64.Implementation()
bi.Dtrsm(blas.Left, uplo, trans, diag, n, nrhs, 1, a, lda, b, ldb)
return true
}
示例14: Dorgl2
// Dorgl2 generates an m×n matrix Q with orthonormal rows defined by the
// first m rows product of elementary reflectors as computed by Dgelqf.
// Q = H_0 * H_1 * ... * H_{k-1}
// len(tau) >= k, 0 <= k <= m, 0 <= m <= n, len(work) >= m.
// Dorgl2 will panic if these conditions are not met.
//
// Dorgl2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dorgl2(m, n, k int, a []float64, lda int, tau, work []float64) {
checkMatrix(m, n, a, lda)
if len(tau) < k {
panic(badTau)
}
if k > m {
panic(kGTM)
}
if k > m {
panic(kGTM)
}
if m > n {
panic(nLTM)
}
if len(work) < m {
panic(badWork)
}
if m == 0 {
return
}
bi := blas64.Implementation()
if k < m {
for i := k; i < m; i++ {
for j := 0; j < n; j++ {
a[i*lda+j] = 0
}
}
for j := k; j < m; j++ {
a[j*lda+j] = 1
}
}
for i := k - 1; i >= 0; i-- {
if i < n-1 {
if i < m-1 {
a[i*lda+i] = 1
impl.Dlarf(blas.Right, m-i-1, n-i, a[i*lda+i:], 1, tau[i], a[(i+1)*lda+i:], lda, work)
}
bi.Dscal(n-i-1, -tau[i], a[i*lda+i+1:], 1)
}
a[i*lda+i] = 1 - tau[i]
for l := 0; l < i; l++ {
a[i*lda+l] = 0
}
}
}
示例15: Dtrti2
// Dtrti2 computes the inverse of a triangular matrix, storing the result in place
// into a. This is the BLAS level 2 version of the algorithm.
func (impl Implementation) Dtrti2(uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int) {
checkMatrix(n, n, a, lda)
if uplo != blas.Upper && uplo != blas.Lower {
panic(badUplo)
}
if diag != blas.NonUnit && diag != blas.Unit {
panic(badDiag)
}
bi := blas64.Implementation()
nonUnit := diag == blas.NonUnit
// TODO(btracey): Replace this with a row-major ordering.
if uplo == blas.Upper {
for j := 0; j < n; j++ {
var ajj float64
if nonUnit {
ajj = 1 / a[j*lda+j]
a[j*lda+j] = ajj
ajj *= -1
} else {
ajj = -1
}
bi.Dtrmv(blas.Upper, blas.NoTrans, diag, j, a, lda, a[j:], lda)
bi.Dscal(j, ajj, a[j:], lda)
}
return
}
for j := n - 1; j >= 0; j-- {
var ajj float64
if nonUnit {
ajj = 1 / a[j*lda+j]
a[j*lda+j] = ajj
ajj *= -1
} else {
ajj = -1
}
if j < n-1 {
bi.Dtrmv(blas.Lower, blas.NoTrans, diag, n-j-1, a[(j+1)*lda+j+1:], lda, a[(j+1)*lda+j:], lda)
bi.Dscal(n-j-1, ajj, a[(j+1)*lda+j:], lda)
}
}
}