本文整理汇总了Golang中github.com/dedis/crypto/nist.Int.MarshalBinary方法的典型用法代码示例。如果您正苦于以下问题:Golang Int.MarshalBinary方法的具体用法?Golang Int.MarshalBinary怎么用?Golang Int.MarshalBinary使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类github.com/dedis/crypto/nist.Int
的用法示例。
在下文中一共展示了Int.MarshalBinary方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: HideEncode
// Elligator 1 reverse-map from point to uniform representative.
// Returns nil if point has no uniform representative.
// See section 3.3 of the Elligator paper.
func (el *el1param) HideEncode(P point, rand cipher.Stream) []byte {
ec := el.ec
x, y := P.getXY()
var a, b, etar, etarp1, X, z, u, t, t1 nist.Int
// condition 1: a = y+1 is nonzero
a.Add(y, &ec.one)
if a.V.Sign() == 0 {
return nil // y+1 = 0, no representative
}
// etar = r(y-1)/2(y+1)
t1.Add(y, &ec.one).Add(&t1, &t1) // 2(y+1)
etar.Sub(y, &ec.one).Mul(&etar, &el.r).Div(&etar, &t1)
// condition 2: b = (1 + eta r)^2 - 1 is a square
etarp1.Add(&ec.one, &etar) // etarp1 = (1 + eta r)
b.Mul(&etarp1, &etarp1).Sub(&b, &ec.one)
if math.Jacobi(&b.V, b.M) < 0 {
return nil // b not a square, no representative
}
// condition 3: if etar = -2 then x=2s(c-1)Chi(c)/r
if etar.Equal(&el.m2) && !x.Equal(&el.c3x) {
return nil
}
// X = -(1+eta r)+((1+eta r)^2-1)^((q+1)/4)
X.Exp(&b, &el.pp1d4).Sub(&X, &etarp1)
// z = Chi((c-1)sX(1+X)x(X^2+1/c^2))
z.Mul(&el.cm1s, &X).Mul(&z, t.Add(&ec.one, &X)).Mul(&z, x)
z.Mul(&z, t.Mul(&X, &X).Add(&t, &el.invc2))
chi(&z, &z)
// u = zX
u.Mul(&z, &X)
// t = (1-u)/(1+u)
t.Div(a.Sub(&ec.one, &u), b.Add(&ec.one, &u))
// Map representative to a byte-string by padding the upper byte.
// This assumes that the prime c.P is close enough to a power of 2
// that the adversary will never notice the "missing" values;
// this is true for the class of curves Elligator1 was designed for.
rep, _ := t.MarshalBinary()
padmask := el.padmask()
if padmask != 0 {
var pad [1]byte
rand.XORKeyStream(pad[:], pad[:])
rep[0] |= pad[0] & padmask
}
return rep
}
示例2: HideEncode
// Elligator 2 reverse-map from point to uniform representative.
// Returns nil if point has no uniform representative.
// See section 5.3 of the Elligator paper.
func (el *el2param) HideEncode(P point, rand cipher.Stream) []byte {
edx, edy := P.getXY()
var x, y, r, xpA, t1 nist.Int
// convert Edwards to Montgomery coordinates
el.ed2mont(&x, &y, edx, edy)
// condition 1: x != -A
if x.Equal(&el.negA) {
return nil // x = -A, no representative
}
// condition 2: if y=0, then x=0
if y.V.Sign() == 0 && x.V.Sign() != 0 {
return nil // y=0 but x!=0, no representative
}
// condition 3: -ux(x+A) is a square
xpA.Add(&x, &el.A)
t1.Mul(&el.u, &x).Mul(&t1, &xpA).Neg(&t1)
if math.Jacobi(&t1.V, t1.M) < 0 {
return nil // not a square, no representative
}
if y.V.Cmp(&el.pm1d2) <= 0 { // y in image of sqrt function
r.Mul(&xpA, &el.u).Div(&x, &r)
} else { // y not in image of sqrt function
r.Mul(&el.u, &x).Div(&xpA, &r)
}
r.Neg(&r)
el.sqrt(&r, &r)
// Sanity check on result
if r.V.Cmp(&el.pm1d2) > 0 {
panic("el2: r too big")
}
// Map representative to a byte-string by padding the upper byte.
// This assumes that the prime c.P is close enough to a power of 2
// that the adversary will never notice the "missing" values;
// this is true for the class of curves Elligator1 was designed for.
rep, _ := r.MarshalBinary()
padmask := el.padmask()
if padmask != 0 {
var pad [1]byte
rand.XORKeyStream(pad[:], pad[:])
rep[0] |= pad[0] & padmask
}
return rep
}
示例3: encodePoint
// Encode an Edwards curve point.
// We use little-endian encoding for consistency with Ed25519.
func (c *curve) encodePoint(x, y *nist.Int) []byte {
// Encode the y-coordinate
b, _ := y.MarshalBinary()
// Encode the sign of the x-coordinate.
if y.M.BitLen()&7 == 0 {
// No unused bits at the top of y-coordinate encoding,
// so we must prepend a whole byte.
b = append(make([]byte, 1), b...)
}
if c.coordSign(x) != 0 {
b[0] |= 0x80
}
// Convert to little-endian
util.Reverse(b, b)
//fmt.Printf("encoding %s,%s:\n%s\n", x.String(), y.String(),
// hex.Dump(b))
return b
}