本文整理汇总了Golang中github.com/dedis/crypto/abstract.Point.Add方法的典型用法代码示例。如果您正苦于以下问题:Golang Point.Add方法的具体用法?Golang Point.Add怎么用?Golang Point.Add使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类github.com/dedis/crypto/abstract.Point
的用法示例。
在下文中一共展示了Point.Add方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: ownerEncode
func (c *ownedCoder) ownerEncode(payload, payout []byte, p abstract.Point) {
// XXX trap-encode
// Pick a fresh random key with which to encrypt the payload
key := make([]byte, c.keylen)
c.random.XORKeyStream(key, key)
// Encrypt the payload with it
c.suite.Cipher(key).XORKeyStream(payout, payload)
// Compute a MAC over the encrypted payload
h := c.suite.Hash()
h.Write(payout)
mac := h.Sum(nil)[:c.maclen]
// Combine the key and the MAC into the Point for this cell header
hdr := append(key, mac...)
if len(hdr) != p.PickLen() {
panic("oops, length of key+mac turned out wrong")
}
mp, _ := c.suite.Point().Pick(hdr, c.random)
// Add this to the blinding point we already computed to transmit.
p.Add(p, mp)
}
示例2: ElGamalVerify
func ElGamalVerify(suite abstract.Suite, message []byte, publicKey abstract.Point,
signatureBuffer []byte, g abstract.Point) error {
// Decode the signature
buf := bytes.NewBuffer(signatureBuffer)
sig := basicSig{}
if err := abstract.Read(buf, &sig, suite); err != nil {
return err
}
r := sig.R
c := sig.C
// Compute base**(r + x*c) == T
var P, T abstract.Point
P = suite.Point()
T = suite.Point()
T.Add(T.Mul(g, r), P.Mul(publicKey, c))
// Verify that the hash based on the message and T
// matches the challange c from the signature
c = hashElGamal(suite, message, T)
if !c.Equal(sig.C) {
return errors.New("invalid signature")
}
return nil
}
示例3: add
// accommodate nils
func (sn *Node) add(a abstract.Point, b abstract.Point) {
if a == nil {
a = sn.suite.Point().Null()
}
if b != nil {
a.Add(a, b)
}
}
示例4: Verify
// Verify checks a signature generated by Sign.
//
// The caller provides the message, anonymity set, and linkage scope
// with which the signature was purportedly produced.
// If the signature is a valid linkable signature (linkScope != nil),
// this function returns a linkage tag that uniquely corresponds
// to the signer within the given linkScope.
// If the signature is a valid unlinkable signature (linkScope == nil),
// returns an empty but non-nil byte-slice instead of a linkage tag on success.
// Returns a nil linkage tag and an error if the signature is invalid.
func Verify(suite abstract.Suite, message []byte, anonymitySet Set,
linkScope []byte, signatureBuffer []byte) ([]byte, error) {
n := len(anonymitySet) // anonymity set size
L := []abstract.Point(anonymitySet) // public keys in ring
// Decode the signature
buf := bytes.NewBuffer(signatureBuffer)
var linkBase, linkTag abstract.Point
sig := lSig{}
sig.S = make([]abstract.Scalar, n)
if linkScope != nil { // linkable ring signature
if err := suite.Read(buf, &sig); err != nil {
return nil, err
}
linkStream := suite.Cipher(linkScope)
linkBase, _ = suite.Point().Pick(nil, linkStream)
linkTag = sig.Tag
} else { // unlinkable ring signature
if err := suite.Read(buf, &sig.C0); err != nil {
return nil, err
}
if err := suite.Read(buf, &sig.S); err != nil {
return nil, err
}
}
// Pre-hash the ring-position-invariant parameters to H1.
H1pre := signH1pre(suite, linkScope, linkTag, message)
// Verify the signature
var P, PG, PH abstract.Point
P = suite.Point()
PG = suite.Point()
if linkScope != nil {
PH = suite.Point()
}
s := sig.S
ci := sig.C0
for i := 0; i < n; i++ {
PG.Add(PG.Mul(nil, s[i]), P.Mul(L[i], ci))
if linkScope != nil {
PH.Add(PH.Mul(linkBase, s[i]), P.Mul(linkTag, ci))
}
ci = signH1(suite, H1pre, PG, PH)
}
if !ci.Equal(sig.C0) {
return nil, errors.New("invalid signature")
}
// Return the re-encoded linkage tag, for uniqueness checking
if linkScope != nil {
tag, _ := linkTag.MarshalBinary()
return tag, nil
} else {
return []byte{}, nil
}
}
示例5: SchnorrMComputeSharedPublicKey
// (Either side) This function computes the shared public key
// by adding public key points over the curve group.
// Since each public key is already g*k where g is the group
// generator this is all we need to do
func SchnorrMComputeSharedPublicKey(suite abstract.Suite,
pkeys []SchnorrPublicKey) SchnorrMultiSignaturePublicKey {
var P abstract.Point = pkeys[0].Y
for _, pkey := range pkeys[1:] {
P.Add(P, pkey.Y)
}
return SchnorrMultiSignaturePublicKey{P}
}
示例6: EncryptKey
func EncryptKey(g abstract.Group, msgPt abstract.Point, pks []abstract.Point) (abstract.Point, abstract.Point) {
k := g.Scalar().Pick(random.Stream)
c1 := g.Point().Mul(nil, k)
var c2 abstract.Point = nil
for _, pk := range pks {
if c2 == nil {
c2 = g.Point().Mul(pk, k)
} else {
c2 = c2.Add(c2, g.Point().Mul(pk, k))
}
}
c2 = c2.Add(c2, msgPt)
return c1, c2
}
示例7: inlineEncode
func (c *ownedCoder) inlineEncode(payload []byte, p abstract.Point) {
// Hash the cleartext payload to produce the MAC
h := c.suite.Hash()
h.Write(payload)
mac := h.Sum(nil)[:c.maclen]
// Embed the payload and MAC into a Point representing the message
hdr := append(payload, mac...)
mp, _ := c.suite.Point().Pick(hdr, c.random)
// Add this to the blinding point we already computed to transmit.
p.Add(p, mp)
}
示例8: SchnorrMComputeAggregateCommitment
// (Client side) The client requiring the n-signature scheme
// performs the addition of points under the elliptic curve group
// and returns the aggregate commitment as a raw point
// in bytes for transmission to the server
func SchnorrMComputeAggregateCommitment(suite abstract.Suite,
pcommits []SchnorrMPublicCommitment) SchnorrMAggregateCommmitment {
var P abstract.Point = pcommits[0].T
for _, pcommit := range pcommits[1:] {
P.Add(P, pcommit.T)
}
k := SchnorrMAggregateCommmitment{P}
return k
/*buf := bytes.Buffer{}
abstract.Write(&buf, &k, suite)
return buf.Bytes()*/
}
示例9: ElGamalVerify
func ElGamalVerify(suite abstract.Suite, message []byte, publicKey abstract.Point,
sig BasicSig) error {
r := sig.R
c := sig.C
// Compute base**(r + x*c) == T
var P, T abstract.Point
P = suite.Point()
T = suite.Point()
T.Add(T.Mul(nil, r), P.Mul(publicKey, c))
// Verify that the hash based on the message and T
// matches the challange c from the signature
c = hashElGamal(suite, message, T)
if !c.Equal(sig.C) {
return errors.New("invalid signature")
}
return nil
}
示例10: SchnorrVerify
func SchnorrVerify(suite abstract.Suite, message []byte,
signature net.BasicSignature) error {
publicKey := signature.Pub
r := signature.Resp
c := signature.Chall
// Compute base**(r + x*c) == T
var P, T abstract.Point
P = suite.Point()
T = suite.Point()
T.Add(T.Mul(nil, r), P.Mul(publicKey, c))
// Verify that the hash based on the message and T
// matches the challange c from the signature
c = hashSchnorr(suite, message, T)
if !c.Equal(signature.Chall) {
return errors.New("invalid signature")
}
return nil
}
示例11: Encrypt
func Encrypt(g abstract.Group, msg []byte, pks []abstract.Point) ([]abstract.Point, []abstract.Point) {
c1s := []abstract.Point{}
c2s := []abstract.Point{}
var msgPt abstract.Point
remainder := msg
for len(remainder) != 0 {
msgPt, remainder = g.Point().Pick(remainder, random.Stream)
k := g.Scalar().Pick(random.Stream)
c1 := g.Point().Mul(nil, k)
var c2 abstract.Point = nil
for _, pk := range pks {
if c2 == nil {
c2 = g.Point().Mul(pk, k)
} else {
c2 = c2.Add(c2, g.Point().Mul(pk, k))
}
}
c2 = c2.Add(c2, msgPt)
c1s = append(c1s, c1)
c2s = append(c2s, c2)
}
return c1s, c2s
}
示例12: Sign
//.........这里部分代码省略.........
// For details on the linkable signature algorithm this function implements,
// see Liu/Wei/Wong,
// "Linkable Spontaneous Anonymous Group Signature for Ad Hoc Groups" at
// http://www.cs.cityu.edu.hk/~duncan/papers/04liuetal_lsag.pdf.
//
// Linkage tags may be used to protect against sock-puppetry or Sybil attacks
// in situations where a verifier needs to know how many distinct members
// of an anonymity set are present or signed messages in a given context.
// It is cryptographically hard for one anonymity set member
// to produce signatures with different linkage tags in the same scope.
// An important and fundamental downside, however, is that
// linkable signatures do NOT offer forward-secure anonymity.
// If an anonymity set member's private key is later released,
// it is trivial to check whether or not that member produced a given signature.
// Also, anonymity set members who did NOT sign a message could
// (voluntarily or under coercion) prove that they did not sign it,
// e.g., simply by signing some other message in that linkage context
// and noting that the resulting linkage tag comes out different.
// Thus, linkable anonymous signatures are not appropriate to use
// in situations where there may be significant risk
// that members' private keys may later be compromised,
// or that members may be persuaded or coerced into revealing whether or not
// they produced a signature of interest.
//
func Sign(suite abstract.Suite, random cipher.Stream, message []byte,
anonymitySet Set, linkScope []byte, mine int, privateKey abstract.Secret) []byte {
// Note that Rivest's original ring construction directly supports
// heterogeneous rings containing public keys of different types -
// e.g., a mixture of RSA keys and DSA keys with varying parameters.
// Our ring signature construction currently supports
// only homogeneous rings containing compatible keys
// drawn from the cipher suite (e.g., the same elliptic curve).
// The upside to this constrint is greater flexibility:
// e.g., we also easily obtain linkable ring signatures,
// which are not readily feasible with the original ring construction.
n := len(anonymitySet) // anonymity set size
L := []abstract.Point(anonymitySet) // public keys in anonymity set
pi := mine
// If we want a linkable ring signature, produce correct linkage tag,
// as a pseudorandom base point multiplied by our private key.
// Liu's scheme specifies the linkScope as a hash of the ring;
// this is one reasonable choice of linkage scope,
// but there are others, so we parameterize this choice.
var linkBase, linkTag abstract.Point
if linkScope != nil {
linkStream := suite.Cipher(linkScope)
linkBase, _ = suite.Point().Pick(nil, linkStream)
linkTag = suite.Point().Mul(linkBase, privateKey)
}
// First pre-hash the parameters to H1
// that are invariant for different ring positions,
// so that we don't have to hash them many times.
H1pre := signH1pre(suite, linkScope, linkTag, message)
// Pick a random commit for my ring position
u := suite.Secret().Pick(random)
var UB, UL abstract.Point
UB = suite.Point().Mul(nil, u)
if linkScope != nil {
UL = suite.Point().Mul(linkBase, u)
}
// Build the challenge ring
s := make([]abstract.Secret, n)
c := make([]abstract.Secret, n)
c[(pi+1)%n] = signH1(suite, H1pre, UB, UL)
var P, PG, PH abstract.Point
P = suite.Point()
PG = suite.Point()
if linkScope != nil {
PH = suite.Point()
}
for i := (pi + 1) % n; i != pi; i = (i + 1) % n {
s[i] = suite.Secret().Pick(random)
PG.Add(PG.Mul(nil, s[i]), P.Mul(L[i], c[i]))
if linkScope != nil {
PH.Add(PH.Mul(linkBase, s[i]), P.Mul(linkTag, c[i]))
}
c[(i+1)%n] = signH1(suite, H1pre, PG, PH)
//fmt.Printf("s%d %s\n",i,s[i].String())
//fmt.Printf("c%d %s\n",(i+1)%n,c[(i+1)%n].String())
}
s[pi] = suite.Secret()
s[pi].Mul(privateKey, c[pi]).Sub(u, s[pi]) // s_pi = u - x_pi c_pi
// Encode and return the signature
buf := bytes.Buffer{}
if linkScope != nil { // linkable ring signature
sig := lSig{uSig{c[0], s}, linkTag}
suite.Write(&buf, &sig)
} else { // unlinkable ring signature
sig := uSig{c[0], s}
suite.Write(&buf, &sig)
}
return buf.Bytes()
}
示例13: thver
// Simple helper to verify Theta elements,
// by checking whether A^a*B^-b = T.
// P,Q,s are simply "scratch" abstract.Point/Scalars reused for efficiency.
func thver(A, B, T, P, Q abstract.Point, a, b, s abstract.Scalar) bool {
P.Mul(A, a)
Q.Mul(B, s.Neg(b))
P.Add(P, Q)
return P.Equal(T)
}