本文整理汇总了Golang中github.com/cockroachdb/cockroach/proto.Key.Less方法的典型用法代码示例。如果您正苦于以下问题:Golang Key.Less方法的具体用法?Golang Key.Less怎么用?Golang Key.Less使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类github.com/cockroachdb/cockroach/proto.Key
的用法示例。
在下文中一共展示了Key.Less方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: getDescriptors
// getDescriptors looks up the range descriptor to use for a query over the
// key range [from,to), with the given lookupOptions. The range descriptor
// which contains the range in which the request should start its query is
// returned first; the returned bool is true in case the given range reaches
// outside the first descriptor.
// In case either of the descriptors is discovered stale, the returned closure
// should be called; it evicts the cache appropriately.
// Note that `from` and `to` are not necessarily Key and EndKey from a
// RequestHeader; it's assumed that they've been translated to key addresses
// already (via KeyAddress).
func (ds *DistSender) getDescriptors(from, to proto.Key, options lookupOptions) (*proto.RangeDescriptor, bool, func(), error) {
var desc *proto.RangeDescriptor
var err error
var descKey proto.Key
if !options.useReverseScan {
descKey = from
} else {
descKey = to
}
desc, err = ds.rangeCache.LookupRangeDescriptor(descKey, options)
if err != nil {
return nil, false, nil, err
}
// Checks whether need to get next range descriptor. If so, returns true.
needAnother := func(desc *proto.RangeDescriptor, isReverse bool) bool {
if isReverse {
return from.Less(desc.StartKey)
}
return desc.EndKey.Less(to)
}
evict := func() {
ds.rangeCache.EvictCachedRangeDescriptor(descKey, desc, options.useReverseScan)
}
return desc, needAnother(desc, options.useReverseScan), evict, nil
}
示例2: prev
// prev gives the right boundary of the union of all requests which don't
// affect keys larger than the given key.
// TODO(tschottdorf): again, better on BatchRequest itself, but can't pull
// 'keys' into 'proto'.
func prev(ba proto.BatchRequest, k proto.Key) proto.Key {
candidate := proto.KeyMin
for _, union := range ba.Requests {
h := union.GetValue().(proto.Request).Header()
addr := keys.KeyAddress(h.Key)
eAddr := keys.KeyAddress(h.EndKey)
if len(eAddr) == 0 {
// Can probably avoid having to compute Next() here if
// we're in the mood for some more complexity.
eAddr = addr.Next()
}
if !eAddr.Less(k) {
if !k.Less(addr) {
// Range contains k, so won't be able to go lower.
return k
}
// Range is disjoint from [KeyMin,k).
continue
}
// We want the largest surviving candidate.
if candidate.Less(addr) {
candidate = addr
}
}
return candidate
}
示例3: clearOverlappingCachedRangeDescriptors
// clearOverlappingCachedRangeDescriptors looks up and clears any
// cache entries which overlap the specified key or descriptor.
func (rdc *rangeDescriptorCache) clearOverlappingCachedRangeDescriptors(key, metaKey proto.Key, desc *proto.RangeDescriptor) {
if desc.StartKey.Equal(desc.EndKey) { // True for some unittests.
return
}
// Clear out any descriptors which subsume the key which we're going
// to cache. For example, if an existing KeyMin->KeyMax descriptor
// should be cleared out in favor of a KeyMin->"m" descriptor.
k, v, ok := rdc.rangeCache.Ceil(rangeCacheKey(metaKey))
if ok {
descriptor := v.(*proto.RangeDescriptor)
if !key.Less(descriptor.StartKey) && !descriptor.EndKey.Less(key) {
if log.V(1) {
log.Infof("clearing overlapping descriptor: key=%s desc=%s", k, descriptor)
}
rdc.rangeCache.Del(k.(rangeCacheKey))
}
}
// Also clear any descriptors which are subsumed by the one we're
// going to cache. This could happen on a merge (and also happens
// when there's a lot of concurrency). Iterate from the range meta key
// after RangeMetaKey(desc.StartKey) to the range meta key for desc.EndKey.
rdc.rangeCache.DoRange(func(k, v interface{}) {
if log.V(1) {
log.Infof("clearing subsumed descriptor: key=%s desc=%s", k, v.(*proto.RangeDescriptor))
}
rdc.rangeCache.Del(k.(rangeCacheKey))
}, rangeCacheKey(keys.RangeMetaKey(desc.StartKey).Next()),
rangeCacheKey(keys.RangeMetaKey(desc.EndKey)))
}
示例4: ComputeSplitKeys
// ComputeSplitKeys takes a start and end key and returns an array of keys
// at which to split the span [start, end).
// The only required splits are at each user table prefix.
func (s *SystemConfig) ComputeSplitKeys(startKey, endKey proto.Key) []proto.Key {
if TestingDisableTableSplits {
return nil
}
tableStart := proto.Key(keys.UserTableDataMin)
if !tableStart.Less(endKey) {
// This range is before the user tables span: no required splits.
return nil
}
startID, ok := ObjectIDForKey(startKey)
if !ok || startID <= keys.MaxReservedDescID {
// The start key is either:
// - not part of the structured data span
// - part of the system span
// In either case, start looking for splits at the first ID usable
// by the user data span.
startID = keys.MaxReservedDescID + 1
} else {
// The start key is either already a split key, or after the split
// key for its ID. We can skip straight to the next one.
startID++
}
// Find the largest object ID.
// We can't keep splitting until we reach endKey as it could be proto.KeyMax.
endID, err := s.GetLargestObjectID()
if err != nil {
log.Errorf("unable to determine largest object ID from system config: %s", err)
return nil
}
// Build key prefixes for sequential table IDs until we reach endKey.
var splitKeys proto.KeySlice
var key proto.Key
// endID could be smaller than startID if we don't have user tables.
for id := startID; id <= endID; id++ {
key = keys.MakeTablePrefix(id)
// Skip if the range starts on a split key.
if !startKey.Less(key) {
continue
}
// Handle the case where EndKey is already a table prefix.
if !key.Less(endKey) {
break
}
splitKeys = append(splitKeys, key)
}
return splitKeys
}
示例5: verifyBinarySearchTree
// verifyBinarySearchTree checks to ensure that all keys to the left of the root
// node are less than it, and all nodes to the right of the root node are
// greater than it. It recursively walks the tree to perform this same check.
func verifyBinarySearchTree(t *testing.T, nodes map[string]proto.RangeTreeNode, testName string, node *proto.RangeTreeNode, keyMin, keyMax proto.Key) {
if node == nil {
return
}
if !node.Key.Less(keyMax) {
t.Errorf("%s: Failed Property BST - The key %s is not less than %s.", testName, node.Key, keyMax)
}
// We need the extra check since proto.KeyMin is actually a range start key.
if !keyMin.Less(node.Key) && !node.Key.Equal(proto.KeyMin) {
t.Errorf("%s: Failed Property BST - The key %s is not greater than %s.", testName, node.Key, keyMin)
}
left, right := getLeftAndRight(t, nodes, testName, node)
verifyBinarySearchTree(t, nodes, testName, left, keyMin, node.Key)
verifyBinarySearchTree(t, nodes, testName, right, node.Key, keyMax)
}
示例6: next
// next gives the left boundary of the union of all requests which don't
// affect keys less than the given key.
// TODO(tschottdorf): again, better on BatchRequest itself, but can't pull
// 'keys' into 'proto'.
func next(ba proto.BatchRequest, k proto.Key) proto.Key {
candidate := proto.KeyMax
for _, union := range ba.Requests {
h := union.GetValue().(proto.Request).Header()
addr := keys.KeyAddress(h.Key)
if addr.Less(k) {
if eAddr := keys.KeyAddress(h.EndKey); k.Less(eAddr) {
// Starts below k, but continues beyond. Need to stay at k.
return k
}
// Affects only [KeyMin,k).
continue
}
// We want the smallest of the surviving candidates.
if addr.Less(candidate) {
candidate = addr
}
}
return candidate
}
示例7: insert
// insert performs the insertion of a new range into the RangeTree. It will
// recursively call insert until it finds the correct location. It will not
// overwrite an already existing key, but that case should not occur.
func (tc *treeContext) insert(node *proto.RangeTreeNode, key proto.Key) (*proto.RangeTreeNode, error) {
if node == nil {
// Insert the new node here.
node = &proto.RangeTreeNode{
Key: key,
}
tc.setNode(node)
} else if key.Less(node.Key) {
// Walk down the tree to the left.
left, err := tc.getNode(node.LeftKey)
if err != nil {
return nil, err
}
left, err = tc.insert(left, key)
if err != nil {
return nil, err
}
if node.LeftKey == nil || !(*node.LeftKey).Equal(left.Key) {
node.LeftKey = &left.Key
tc.setNode(node)
}
} else {
// Walk down the tree to the right.
right, err := tc.getNode(node.RightKey)
if err != nil {
return nil, err
}
right, err = tc.insert(right, key)
if err != nil {
return nil, err
}
if node.RightKey == nil || !(*node.RightKey).Equal(right.Key) {
node.RightKey = &right.Key
tc.setNode(node)
}
}
return tc.walkUpRot23(node)
}
示例8: verifyBinarySearchTree
// verifyBinarySearchTree checks to ensure that all keys to the left of the root
// node are less than it, and all nodes to the right of the root node are
// greater than it. It recursively walks the tree to perform this same check.
func verifyBinarySearchTree(t *testing.T, tc *treeContext, testName string, node *proto.RangeTreeNode, keyMin, keyMax proto.Key) {
if !node.Key.Less(keyMax) {
t.Errorf("%s: Failed Property BST - The key %s is not less than %s.", testName, node.Key, keyMax)
}
if !keyMin.Less(node.Key) {
t.Errorf("%s: Failed Property BST - The key %s is not greater than %s.", testName, node.Key, keyMin)
}
if node.LeftKey != nil {
left, err := tc.getNode(node.LeftKey)
if err != nil {
t.Fatal(err)
}
verifyBinarySearchTree(t, tc, testName, left, keyMin, node.Key)
}
if node.RightKey != nil {
right, err := tc.getNode(node.RightKey)
if err != nil {
t.Fatal(err)
}
verifyBinarySearchTree(t, tc, testName, right, node.Key, keyMax)
}
}