本文整理汇总了Golang中github.com/cockroachdb/cockroach/pkg/internal/client.DB.Txn方法的典型用法代码示例。如果您正苦于以下问题:Golang DB.Txn方法的具体用法?Golang DB.Txn怎么用?Golang DB.Txn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类github.com/cockroachdb/cockroach/pkg/internal/client.DB
的用法示例。
在下文中一共展示了DB.Txn方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: truncateTableInChunks
// truncateTableInChunks truncates the data of a table in chunks. It deletes a
// range of data for the table, which includes the PK and all indexes.
func truncateTableInChunks(
ctx context.Context, tableDesc *sqlbase.TableDescriptor, db *client.DB,
) error {
const chunkSize = TableTruncateChunkSize
var resume roachpb.Span
for row, done := 0, false; !done; row += chunkSize {
resumeAt := resume
if log.V(2) {
log.Infof(ctx, "table %s truncate at row: %d, span: %s", tableDesc.Name, row, resume)
}
if err := db.Txn(ctx, func(txn *client.Txn) error {
rd, err := makeRowDeleter(txn, tableDesc, nil, nil, false)
if err != nil {
return err
}
td := tableDeleter{rd: rd}
if err := td.init(txn); err != nil {
return err
}
resume, err = td.deleteAllRows(txn.Context, resumeAt, chunkSize)
return err
}); err != nil {
return err
}
done = resume.Key == nil
}
return nil
}
示例2: runTxn
func (hv *historyVerifier) runTxn(
txnIdx int,
priority int32,
isolation enginepb.IsolationType,
cmds []*cmd,
db *client.DB,
t *testing.T,
) error {
var retry int
txnName := fmt.Sprintf("txn %d", txnIdx+1)
cmdIdx := -1
err := db.Txn(context.TODO(), func(txn *client.Txn) error {
// If this is 2nd attempt, and a retry wasn't expected, return a
// retry error which results in further histories being enumerated.
if retry++; retry > 1 {
if !cmds[cmdIdx].expRetry {
// Propagate retry error to history execution to enumerate all
// histories where this txn retries at this command.
return &retryError{txnIdx: txnIdx, cmdIdx: cmdIdx}
}
// We're expecting a retry, so just send nil down the done channel.
cmds[cmdIdx].done(nil)
}
txn.SetDebugName(txnName, 0)
if isolation == enginepb.SNAPSHOT {
if err := txn.SetIsolation(enginepb.SNAPSHOT); err != nil {
return err
}
}
txn.InternalSetPriority(priority)
env := map[string]int64{}
for cmdIdx+1 < len(cmds) {
cmdIdx++
cmds[cmdIdx].env = env
_, err := hv.runCmd(txn, txnIdx, retry, cmds[cmdIdx], t)
if err != nil {
if log.V(1) {
log.Infof(context.Background(), "%s: failed running %s: %s", txnName, cmds[cmdIdx], err)
}
return err
}
}
return nil
})
if err != nil {
for _, c := range cmds[cmdIdx:] {
c.done(err)
}
}
return err
}
示例3: startTestWriter
// startTestWriter creates a writer which initiates a sequence of
// transactions, each which writes up to 10 times to random keys with
// random values. If not nil, txnChannel is written to non-blockingly
// every time a new transaction starts.
func startTestWriter(
db *client.DB,
i int64,
valBytes int32,
wg *sync.WaitGroup,
retries *int32,
txnChannel chan struct{},
done <-chan struct{},
t *testing.T,
) {
src := rand.New(rand.NewSource(i))
defer func() {
if wg != nil {
wg.Done()
}
}()
for j := 0; ; j++ {
select {
case <-done:
return
default:
first := true
err := db.Txn(context.TODO(), func(txn *client.Txn) error {
if first && txnChannel != nil {
select {
case txnChannel <- struct{}{}:
default:
}
} else if !first && retries != nil {
atomic.AddInt32(retries, 1)
}
first = false
for j := 0; j <= int(src.Int31n(10)); j++ {
key := randutil.RandBytes(src, 10)
val := randutil.RandBytes(src, int(src.Int31n(valBytes)))
if err := txn.Put(key, val); err != nil {
log.Infof(context.Background(), "experienced an error in routine %d: %s", i, err)
return err
}
}
return nil
})
if err != nil {
t.Error(err)
} else {
time.Sleep(1 * time.Millisecond)
}
}
}
}
示例4: purgeOldLeases
// purgeOldLeases refreshes the leases on a table. Unused leases older than
// minVersion will be released.
// If deleted is set, minVersion is ignored; no lease is acquired and all
// existing unused leases are released. The table is further marked for
// deletion, which will cause existing in-use leases to be eagerly released once
// they're not in use any more.
// If t has no active leases, nothing is done.
func (t *tableState) purgeOldLeases(
db *client.DB, deleted bool, minVersion sqlbase.DescriptorVersion, store LeaseStore,
) error {
t.mu.Lock()
empty := len(t.active.data) == 0
t.mu.Unlock()
if empty {
// We don't currently have a lease on this table, so no need to refresh
// anything.
return nil
}
// Acquire and release a lease on the table at a version >= minVersion.
var lease *LeaseState
err := db.Txn(context.TODO(), func(txn *client.Txn) error {
var err error
if !deleted {
lease, err = t.acquire(txn, minVersion, store)
if err == errTableDropped {
deleted = true
}
}
if err == nil || deleted {
t.mu.Lock()
defer t.mu.Unlock()
var toRelease []*LeaseState
if deleted {
t.deleted = true
}
toRelease = append([]*LeaseState(nil), t.active.data...)
t.releaseLeasesIfNotActive(toRelease, store)
return nil
}
return err
})
if err != nil {
return err
}
if lease == nil {
return nil
}
return t.release(lease, store)
}
示例5: runCmds
func (hv *historyVerifier) runCmds(
cmds []*cmd, db *client.DB, t *testing.T,
) (string, map[string]int64, error) {
var strs []string
env := map[string]int64{}
err := db.Txn(context.TODO(), func(txn *client.Txn) error {
for _, c := range cmds {
c.historyIdx = hv.idx
c.env = env
c.init(nil)
fmtStr, err := c.execute(txn, t)
if err != nil {
return err
}
strs = append(strs, fmt.Sprintf(fmtStr, 0, 0))
}
return nil
})
return strings.Join(strs, " "), env, err
}
示例6: restoreTable
// restoreTable inserts the given DatabaseDescriptor. If the name conflicts with
// an existing table, the one being restored is rekeyed with a new ID and the
// old data is deleted.
func restoreTable(
ctx context.Context,
db client.DB,
database sqlbase.DatabaseDescriptor,
table *sqlbase.TableDescriptor,
ranges []sqlbase.BackupRangeDescriptor,
) error {
if log.V(1) {
log.Infof(ctx, "Restoring Table %q", table.Name)
}
var newTableID sqlbase.ID
if err := db.Txn(ctx, func(txn *client.Txn) error {
// Make sure there's a database with a name that matches the original.
if _, err := getDescriptorID(txn, tableKey{name: database.Name}); err != nil {
return errors.Wrapf(err, "a database named %q needs to exist to restore table %q",
database.Name, table.Name)
}
// Assign a new ID for the table. TODO(dan): For now, we're always
// generating a new ID, but varints get longer as they get bigger and so
// our keys will, too. We should someday figure out how to overwrite an
// existing table and steal its ID.
var err error
newTableID, err = GenerateUniqueDescID(txn)
return err
}); err != nil {
return err
}
// Create the iteration keys before we give the table its new ID.
tableStartKeyOld := roachpb.Key(sqlbase.MakeIndexKeyPrefix(table, table.PrimaryIndex.ID))
tableEndKeyOld := tableStartKeyOld.PrefixEnd()
// This loop makes restoring multiple tables O(N*M), where N is the number
// of tables and M is the number of ranges. We could reduce this using an
// interval tree if necessary.
var wg sync.WaitGroup
result := struct {
syncutil.Mutex
firstErr error
numErrs int
}{}
for _, rangeDesc := range ranges {
if len(rangeDesc.Path) == 0 {
// Empty path means empty range.
continue
}
intersectBegin, intersectEnd := IntersectHalfOpen(
rangeDesc.StartKey, rangeDesc.EndKey, tableStartKeyOld, tableEndKeyOld)
if intersectBegin != nil && intersectEnd != nil {
// Write the data under the new ID.
// TODO(dan): There's no SQL descriptors that point at this yet, so it
// should be possible to remove it from the one txn this is all currently
// run under. If we do that, make sure this data gets cleaned up on errors.
wg.Add(1)
go func(desc sqlbase.BackupRangeDescriptor) {
for r := retry.StartWithCtx(ctx, base.DefaultRetryOptions()); r.Next(); {
err := db.Txn(ctx, func(txn *client.Txn) error {
return Ingest(ctx, txn, desc.Path, desc.CRC, intersectBegin, intersectEnd, newTableID)
})
if _, ok := err.(*client.AutoCommitError); ok {
log.Errorf(ctx, "auto commit error during ingest: %s", err)
// TODO(dan): Ingest currently does not rely on the
// range being empty, but the plan is that it will. When
// that change happens, this will have to delete any
// partially ingested data or something.
continue
}
if err != nil {
log.Errorf(ctx, "%T %s", err, err)
result.Lock()
defer result.Unlock()
if result.firstErr != nil {
result.firstErr = err
}
result.numErrs++
}
break
}
wg.Done()
}(rangeDesc)
}
}
wg.Wait()
// All concurrent accesses have finished, we don't need the lock anymore.
if result.firstErr != nil {
// This leaves the data that did get imported in case the user wants to
// retry.
// TODO(dan): Build tooling to allow a user to restart a failed restore.
return errors.Wrapf(result.firstErr, "ingest encountered %d errors", result.numErrs)
}
table.ID = newTableID
return db.Txn(ctx, func(txn *client.Txn) error {
//.........这里部分代码省略.........
示例7: concurrentIncrements
// concurrentIncrements starts two Goroutines in parallel, both of which
// read the integers stored at the other's key and add it onto their own.
// It is checked that the outcome is serializable, i.e. exactly one of the
// two Goroutines (the later write) sees the previous write by the other.
func concurrentIncrements(db *client.DB, t *testing.T) {
// wgStart waits for all transactions to line up, wgEnd has the main
// function wait for them to finish.
var wgStart, wgEnd sync.WaitGroup
wgStart.Add(2 + 1)
wgEnd.Add(2)
for i := 0; i < 2; i++ {
go func(i int) {
// Read the other key, write key i.
readKey := []byte(fmt.Sprintf(testUser+"/value-%d", (i+1)%2))
writeKey := []byte(fmt.Sprintf(testUser+"/value-%d", i))
defer wgEnd.Done()
wgStart.Done()
// Wait until the other goroutines are running.
wgStart.Wait()
if err := db.Txn(context.TODO(), func(txn *client.Txn) error {
txn.SetDebugName(fmt.Sprintf("test-%d", i), 0)
// Retrieve the other key.
gr, err := txn.Get(readKey)
if err != nil {
return err
}
otherValue := int64(0)
if gr.Value != nil {
otherValue = gr.ValueInt()
}
_, err = txn.Inc(writeKey, 1+otherValue)
return err
}); err != nil {
t.Error(err)
}
}(i)
}
// Kick the goroutines loose.
wgStart.Done()
// Wait for the goroutines to finish.
wgEnd.Wait()
// Verify that both keys contain something and, more importantly, that
// one key actually contains the value of the first writer and not only
// its own.
total := int64(0)
results := []int64(nil)
for i := 0; i < 2; i++ {
readKey := []byte(fmt.Sprintf(testUser+"/value-%d", i))
gr, err := db.Get(context.TODO(), readKey)
if err != nil {
t.Fatal(err)
}
if gr.Value == nil {
t.Fatalf("unexpected empty key: %s=%v", readKey, gr.Value)
}
total += gr.ValueInt()
results = append(results, gr.ValueInt())
}
// First writer should have 1, second one 2
if total != 3 {
t.Fatalf("got unserializable values %v", results)
}
}