本文整理汇总了Golang中github.com/bxy09/gfstat/performance/utils.SlidingWindow.Average方法的典型用法代码示例。如果您正苦于以下问题:Golang SlidingWindow.Average方法的具体用法?Golang SlidingWindow.Average怎么用?Golang SlidingWindow.Average使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类github.com/bxy09/gfstat/performance/utils.SlidingWindow
的用法示例。
在下文中一共展示了SlidingWindow.Average方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: Kappa
/// <summary>
/// Kappa is a generalized downside risk-adjusted performance measure.
/// To calculate it, we take the difference of the mean of the distribution
/// to the target and we divide it by the l-root of the lth lower partial
/// moment. To calculate the lth lower partial moment we take the subset of
/// returns below the target and we sum the differences of the target to
/// these returns. We then return return this sum divided by the length of
/// the whole distribution.
/// (非年化的超MAR平均收益率通过l阶根的低于MAR的收益率序列的l阶矩)
/// </summary>
func Kappa(Ra *utils.SlidingWindow, MAR float64, l float64) (float64, error) {
undervalues, err := utils.NewSlidingWindow(Ra.Count())
if err != nil {
return math.NaN(), err
}
for i := 0; i < Ra.Count(); i++ {
if Ra.Data()[i] < MAR {
undervalues.Add(Ra.Data()[i])
}
}
var n = float64(Ra.Count())
var m = float64(Ra.Average())
neg_Sliding, err := utils.Negative(undervalues)
if err != nil {
return math.NaN(), err
}
add_Sliding, err := utils.Add(MAR, neg_Sliding)
if err != nil {
return math.NaN(), err
}
pow_Sliding, err := utils.Power(add_Sliding, float64(l))
if err != nil {
return math.NaN(), err
}
var temp = pow_Sliding.Sum() / n
return (m - MAR) / math.Pow(temp, (1.0/float64(l))), nil
}
示例2: Kurtosis
/// <summary>
/// 峰度
/// </summary>
// = "sample"
func Kurtosis(Ra *utils.SlidingWindow) (float64, error) {
if Ra == nil || Ra.Count() <= 3 {
return math.NaN(), errors.New("In Kurtosis, Ra == nil || Ra.Count() <= 3")
}
n := float64(Ra.Count())
method := "sample_excess"
switch method {
case "sample_excess": //kurtosis = sum((x-mean(x))^4/var(x)^2)*n*(n+1)/((n-1)*(n-2)*(n-3)) - 3*(n-1)^2/((n-2)*(n-3))
var_data, err := Variance(Ra)
if err != nil {
return math.NaN(), err
}
add_Sliding, err := utils.Add(-Ra.Average(), Ra)
if err != nil {
return math.NaN(), err
}
pow_Sliding, err := utils.Power(add_Sliding, 4.0)
if err != nil {
return math.NaN(), err
}
multi_Sliding, err := utils.Multi(1.0/math.Pow(var_data, 2.0), pow_Sliding)
if err != nil {
return math.NaN(), err
}
return multi_Sliding.Sum()*n*(n+1.0)/((n-1.0)*(n-2.0)*(n-3.0)) - 3*(n-1.0)*(n-1.0)/((n-2.0)*(n-3.0)), nil
default:
return math.NaN(), errors.New("In Kurtosis, method is default")
}
return math.NaN(), nil
}
示例3: Skewness
/// <summary>
/// 偏度
/// </summary>
// default = "moment"
func Skewness(Ra *utils.SlidingWindow) (float64, error) {
if Ra == nil || Ra.Count() <= 2 {
return math.NaN(), errors.New("In Skewness, Ra == nil || Ra.Count() <= 2")
}
n := float64(Ra.Count())
method := "moment"
switch method {
//"moment", "fisher", "sample"
case "moment": //skewness = sum((x-mean(x))^3/sqrt(var(x)*(n-1)/n)^3)/length(x)
var_data, err := Variance(Ra)
if err != nil {
return math.NaN(), err
}
add_Sliding, err := utils.Add(-Ra.Average(), Ra)
if err != nil {
return math.NaN(), err
}
pow_Sliding, err := utils.Power(add_Sliding, 3.0)
if err != nil {
return math.NaN(), err
}
multi_Sliding, err := utils.Multi(1.0/math.Pow(var_data*(n-1.0)/n, 1.5), pow_Sliding)
if err != nil {
return math.NaN(), err
}
return multi_Sliding.Sum() / n, nil
default:
return math.NaN(), errors.New("In Skewness, method is default")
}
return math.NaN(), nil
}
示例4: MeanAbsoluteDeviation
/// <summary>
/// To calculate Mean absolute deviation we take
/// the sum of the absolute value of the difference between the returns and the mean of the returns
/// and we divide it by the number of returns.
/// (描述收益率偏离均值得一个指标)
/// </summary>
func MeanAbsoluteDeviation(Ra *utils.SlidingWindow) (float64, error) {
if Ra.Count() <= 0 {
return math.NaN(), errors.New("In MeanAbsoluteDeviation, Ra.Count() <= 0")
}
add_Sliding, _ := utils.Add(-Ra.Average(), Ra)
ads_Sliding, _ := utils.Abs(add_Sliding)
return ads_Sliding.Sum() / float64(Ra.Count()), nil
}
示例5: Centered
/// <param name="returns"></param>
/// <returns></returns>
func Centered(returns *utils.SlidingWindow) (*utils.SlidingWindow, error) {
if returns == nil {
return nil, errors.New("Centered Sliding window is nil")
}
if returns.Count() == 0 {
return nil, errors.New("Centered Count is Zero !!!")
}
return utils.Add(-returns.Average(), returns)
}
示例6: Variance
/// <summary>
/// 方差
/// </summary>
func Variance(Ra *utils.SlidingWindow) (float64, error) {
if Ra == nil || Ra.Count() <= 1 {
return math.NaN(), errors.New("In Variance, Ra == nil || Ra.Count() <= 1")
}
result := 0.0
mean := Ra.Average()
for i := 0; i < Ra.Count(); i++ {
result += (Ra.Data()[i] - mean) * (Ra.Data()[i] - mean)
}
return result / (float64)(Ra.Count()-1), nil
}
示例7: Annualized
/// <param name="returns"></param>
/// <param name="scale"></param>
/// <param name="geometric"></param>
/// <returns></returns>
func Annualized(returns *utils.SlidingWindow, scale float64, geometric bool) (float64, error) {
if returns == nil {
return math.NaN(), errors.New("Returns Utils Sliding Window is nil")
}
if returns.Count() == 0 {
return math.NaN(), errors.New("Returns Windows content is Zero")
}
n := returns.Count()
if geometric {
add_Sliding, err := utils.Add(1.0, returns)
if err != nil {
return math.NaN(), err
}
prod_Data, err := utils.Prod(add_Sliding)
if err != nil {
return math.NaN(), err
}
return math.Pow(prod_Data, float64(scale)/float64(n)) - 1.0, nil
} else {
return returns.Average() * float64(scale), nil
}
}