本文整理汇总了Golang中github.com/BurntSushi/xgbutil.XUtil.Sync方法的典型用法代码示例。如果您正苦于以下问题:Golang XUtil.Sync方法的具体用法?Golang XUtil.Sync怎么用?Golang XUtil.Sync使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类github.com/BurntSushi/xgbutil.XUtil
的用法示例。
在下文中一共展示了XUtil.Sync方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: compressMotionNotify
// compressMotionNotify takes a MotionNotify event, and inspects the event
// queue for any future MotionNotify events that can be received without
// blocking. The most recent MotionNotify event is then returned.
// Note that we need to make sure that the Event, Child, Detail, State, Root
// and SameScreen fields are the same to ensure the same window/action is
// generating events. That is, we are only compressing the RootX, RootY,
// EventX and EventY fields.
// This function is not thread safe, since Peek returns a *copy* of the
// event queue---which could be out of date by the time we dequeue events.
func compressMotionNotify(X *xgbutil.XUtil,
ev xevent.MotionNotifyEvent) xevent.MotionNotifyEvent {
// We force a round trip request so that we make sure to read all
// available events.
X.Sync()
xevent.Read(X, false)
// The most recent MotionNotify event that we'll end up returning.
laste := ev
// Look through each event in the queue. If it's an event and it matches
// all the fields in 'ev' that are detailed above, then set it to 'laste'.
// In which case, we'll also dequeue the event, otherwise it will be
// processed twice!
// N.B. If our only goal was to find the most recent relevant MotionNotify
// event, we could traverse the event queue backwards and simply use
// the first MotionNotify we see. However, this could potentially leave
// other MotionNotify events in the queue, which we *don't* want to be
// processed. So we stride along and just pick off MotionNotify events
// until we don't see any more.
for i, ee := range xevent.Peek(X) {
if ee.Err != nil { // This is an error, skip it.
continue
}
// Use type assertion to make sure this is a MotionNotify event.
if mn, ok := ee.Event.(xproto.MotionNotifyEvent); ok {
// Now make sure all appropriate fields are equivalent.
if ev.Event == mn.Event && ev.Child == mn.Child &&
ev.Detail == mn.Detail && ev.State == mn.State &&
ev.Root == mn.Root && ev.SameScreen == mn.SameScreen {
// Set the most recent/valid motion notify event.
laste = xevent.MotionNotifyEvent{&mn}
// We cheat and use the stack semantics of defer to dequeue
// most recent motion notify events first, so that the indices
// don't become invalid. (If we dequeued oldest first, we'd
// have to account for all future events shifting to the left
// by one.)
defer func(i int) { xevent.DequeueAt(X, i) }(i)
}
}
}
// This isn't strictly necessary, but is correct. We should update
// xgbutil's sense of time with the most recent event processed.
// This is typically done in the main event loop, but since we are
// subverting the main event loop, we should take care of it.
X.TimeSet(laste.Time)
return laste
}
示例2: dragStep
// dragStep executes the "step" function registered for the current drag.
// It also compresses the MotionNotify events.
func dragStep(xu *xgbutil.XUtil, ev xevent.MotionNotifyEvent) {
// If for whatever reason we don't have any *piece* of a grab,
// we've gotta back out.
if !mouseDrag(xu) || mouseDragStep(xu) == nil || mouseDragEnd(xu) == nil {
dragUngrab(xu)
mouseDragStepSet(xu, nil)
mouseDragEndSet(xu, nil)
return
}
// The most recent MotionNotify event that we'll end up returning.
laste := ev
// We force a round trip request so that we make sure to read all
// available events.
xu.Sync()
xevent.Read(xu, false)
// Compress MotionNotify events.
for i, ee := range xevent.Peek(xu) {
if ee.Err != nil { // This is an error, skip it.
continue
}
// Use type assertion to make sure this is a MotionNotify event.
if mn, ok := ee.Event.(xproto.MotionNotifyEvent); ok {
// Now make sure all appropriate fields are equivalent.
if ev.Event == mn.Event && ev.Child == mn.Child &&
ev.Detail == mn.Detail && ev.State == mn.State &&
ev.Root == mn.Root && ev.SameScreen == mn.SameScreen {
// Set the most recent/valid motion notify event.
laste = xevent.MotionNotifyEvent{&mn}
// We cheat and use the stack semantics of defer to dequeue
// most recent motion notify events first, so that the indices
// don't become invalid. (If we dequeued oldest first, we'd
// have to account for all future events shifting to the left
// by one.)
defer func(i int) { xevent.DequeueAt(xu, i) }(i)
}
}
}
xu.TimeSet(laste.Time)
// now actually run the step
mouseDragStep(xu)(xu, int(laste.RootX), int(laste.RootY),
int(laste.EventX), int(laste.EventY))
}
示例3: compressConfigureNotify
// compressConfigureNotify "compresses" incoming ConfigureNotify events so that
// event processing never lags behind gradient drawing.
// This is necessary because drawing a gradient cannot keep up with the rate
// at which ConfigureNotify events are sent to us, thereby creating a "lag".
// Compression works by examining the "future" of the event queue, and skipping
// ahead to the most recent ConfigureNotify event and throwing away the rest.
//
// A more detailed treatment of event compression can be found in
// xgbutil/examples/compress-events.
func compressConfigureNotify(X *xgbutil.XUtil,
ev xevent.ConfigureNotifyEvent) xevent.ConfigureNotifyEvent {
// Catch up with all X events as much as we can.
X.Sync()
xevent.Read(X, false) // non-blocking
laste := ev
for i, ee := range xevent.Peek(X) {
if ee.Err != nil {
continue
}
if cn, ok := ee.Event.(xproto.ConfigureNotifyEvent); ok {
// Only compress this ConfigureNotify if it matches the window
// of the original event.
if ev.Event == cn.Event && ev.Window == cn.Window {
laste = xevent.ConfigureNotifyEvent{&cn}
defer func(i int) { xevent.DequeueAt(X, i) }(i)
}
}
}
return laste
}