本文整理汇总了Golang中github.com/bobhancock/gomatrix/matrix.DenseMatrix.Get方法的典型用法代码示例。如果您正苦于以下问题:Golang DenseMatrix.Get方法的具体用法?Golang DenseMatrix.Get怎么用?Golang DenseMatrix.Get使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类github.com/bobhancock/gomatrix/matrix.DenseMatrix
的用法示例。
在下文中一共展示了DenseMatrix.Get方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: Kmeansp
// Kmeansp returns means and distance squared of the coordinates for each
// centroid using parallel computation.
//
// Input values
//
// datapoints - a kX2 matrix of R^2 coordinates
//
// centroids - a kX2 matrix of R^2 coordinates for centroids.
//
// measurer - anythng that implements the matutil.VectorMeasurer interface to
// calculate the distance between a centroid and datapoint. (e.g., Euclidian
// distance)
//
// Return values
//
// centroidMean - a kX2 matrix where the row number corresponds to the same
// row in the centroid matrix and the two columns are the means of the
// coordinates for that cluster. i.e., the best centroids that could
// be determined.
//
// ____ ______
// | 12.29 32.94 | <-- The mean of coordinates for centroid 0
// | 4.6 29.22 | <-- The mean of coordinates for centroid 1
// |_____ ______|
//
//
// centroidSqErr - a kX2 matrix where the first column contains a number
// indicating the centroid and the second column contains the minimum
// distance between centroid and point squared. (i.e., the squared error)
//
// ____ _______
// | 0 38.01 | <-- Centroid 0, squared error for the coordinates in row 0 of datapoints
// | 1 23 .21| <-- Centroid 1, squared error for the coordinates in row 1 of datapoints
// | 0 14.12 | <-- Centroid 0, squared error for the coordinates in row 2 of datapoints
// _____ _______
//func Kmeansp(datapoints, centroids *matrix.DenseMatrix, measurer matutil.VectorMeasurer) (centroidMean,
func Kmeansp(datapoints *matrix.DenseMatrix, k int, cc CentroidChooser, measurer matutil.VectorMeasurer) (centroidMean,
centroidSqErr *matrix.DenseMatrix, err error) {
//k, _ := centroids.GetSize()
fp, _ := os.Create("/var/tmp/km.log")
w := io.Writer(fp)
log.SetOutput(w)
centroids := cc.ChooseCentroids(datapoints, k)
numRows, numCols := datapoints.GetSize()
centroidSqErr = matrix.Zeros(numRows, numCols)
centroidMean = matrix.Zeros(k, numCols)
jobs := make(chan PairPointCentroidJob, numworkers)
results := make(chan PairPointCentroidResult, minimum(1024, numRows))
done := make(chan int, numworkers)
go addPairPointCentroidJobs(jobs, datapoints, centroidSqErr, centroids, measurer, results)
for i := 0; i < numworkers; i++ {
go doPairPointCentroidJobs(done, jobs)
}
go awaitPairPointCentroidCompletion(done, results)
processPairPointToCentroidResults(centroidSqErr, results) // This blocks so that all the results can be processed
// Now that you have each data point grouped with a centroid, iterate
// through the centroidSqErr martix and for each centroid retrieve the
// original coordinates from datapoints and place the results in
// pointsInCuster.
for c := 0; c < k; c++ {
// c is the index that identifies the current centroid.
// d is the index that identifies a row in centroidSqErr and datapoints.
// Select all the rows in centroidSqErr whose first col value == c.
// Get the corresponding row vector from datapoints and place it in pointsInCluster.
matches, err := centroidSqErr.FiltColMap(float64(c), float64(c), 0) //rows with c in column 0.
if err != nil {
return centroidMean, centroidSqErr, nil
}
// It is possible that some centroids will not have any points, so there
// may not be any matches in the first column of centroidSqErr.
if len(matches) == 0 {
continue
}
pointsInCluster := matrix.Zeros(len(matches), 2)
for d, rownum := range matches {
pointsInCluster.Set(d, 0, datapoints.Get(int(rownum), 0))
pointsInCluster.Set(d, 1, datapoints.Get(int(rownum), 1))
}
// pointsInCluster now contains all the data points for the current
// centroid. Take the mean of each of the 2 cols in pointsInCluster.
means := pointsInCluster.MeanCols()
centroidMean.Set(c, 0, means.Get(0, 0))
centroidMean.Set(c, 1, means.Get(0, 1))
}
return
}
示例2: assessClusters
// assessClusters assigns the results to the CentPointDist matrix.
func assessClusters(CentPointDist *matrix.DenseMatrix, results <-chan PairPointCentroidResult) bool {
change := false
for result := range results {
if CentPointDist.Get(result.rowNum, 0) != result.centroidRowNum {
change = true
}
CentPointDist.Set(result.rowNum, 0, result.centroidRowNum)
CentPointDist.Set(result.rowNum, 1, result.distSquared)
}
return change
}
示例3: CalcDist
// CalcDist finds the ManhattanDistance which is the sum of the aboslute
// difference of the coordinates. Also known as rectilinear distance,
// city block distance, or taxicab distance.
func (md ManhattanDist) CalcDist(a, b *matrix.DenseMatrix) (dist float64, err error) {
dist = float64(0)
err = nil
arows, acols := a.GetSize()
brows, bcols := b.GetSize()
if arows != 1 || brows != 1 {
return dist, errors.New(fmt.Sprintf("matutil: Matrices must contain only 1 row. a has %d and b has %d.", arows, brows))
} else if arows != brows {
return dist, errors.New(fmt.Sprintf("matutil: Matrices must have the same dimensions. a=%dX%d b=%dX%d", arows, acols, brows, bcols))
}
dist = math.Abs(a.Get(0, 0)-b.Get(0, 0)) + math.Abs(a.Get(0, 1)-b.Get(0, 1))
return
}
示例4: boundaries
// boundaries returns the max and min x and y values for a dense matrix
// of shape m x m.
func boundaries(mat *matrix.DenseMatrix) (xmin, xmax, ymin, ymax float64) {
rows, _ := mat.GetSize()
xmin, ymin = mat.Get(0, 0), mat.Get(0, 1)
xmax, ymax = mat.Get(0, 0), mat.Get(0, 1)
for i := 1; i < rows; i++ {
xi, yi := mat.Get(i, 0), mat.Get(i, 1)
if xi > xmax {
xmax = xi
} else if xi < xmin {
xmin = xi
}
if yi > ymax {
ymax = yi
} else if yi < ymin {
ymin = yi
}
}
return
}
示例5: GetBoundaries
// GetBoundaries returns the max and min x and y values for a dense matrix
// of shape m x 2.
func GetBoundaries(mat *matrix.DenseMatrix) (xmin, xmax, ymin, ymax float64) {
rows, cols := mat.GetSize()
if cols != 2 {
// TODO - should there be an err return, or should we panic here?
}
xmin, ymin = mat.Get(0, 0), mat.Get(0, 1)
xmax, ymax = mat.Get(0, 0), mat.Get(0, 1)
for i := 1; i < rows; i++ {
xi, yi := mat.Get(i, 0), mat.Get(i, 1)
if xi > xmax {
xmax = xi
} else if xi < xmin {
xmin = xi
}
if yi > ymax {
ymax = yi
} else if yi < ymin {
ymin = yi
}
}
return
}
示例6: kmeans
// kmeans partitions datapoints into K clusters. This results in a partitioning of
// the data space into Voronoi cells. The problem is NP-hard so here we attempt
// to parallelize or make concurrent as many processes as possible to reduce the
// running time.
//
// 1. Place K points into the space represented by the objects that are being clustered.
// These points represent initial group centroids.
//
// 2. Assign each object to the group that has the closest centroid.
//
// 3. When all objects have been assigned, recalculate the positions of the K centroids
// by calculating the mean of all cooridnates in a cluster and making that
// the new centroid.
//
// 4. Repeat Steps 2 and 3 until the centroids no longer move.
//
// centroids is K x M matrix that cotains the coordinates for the centroids.
// The centroids are indexed by the 0 based rows of this matrix.
// ____ _________
// | 12.29 32.94 ... | <-- The coordinates for centroid 0
// | 4.6 29.22 ... | <-- The coordinates for centroid 1
// |_____ __________|
//
//
// CentPointDist is ax R x M matrix. The rows have a 1:1 relationship to
// the rows in datapoints. Column 0 contains the row number in centroids
// that corresponds to the centroid for the datapoint in row i of this matrix.
// Column 1 contains (x_i - mu(i))^2.
// ____ _______
// | 3 38.01 | <-- Centroid 3, squared error for the coordinates in row 0 of datapoints
// | 1 23 .21| <-- Centroid 1, squared error for the coordinates in row 1 of datapoints
// | 0 14.12 | <-- Centroid 0, squared error for the coordinates in row 2 of datapoints
// _____ _______
//
func kmeans(datapoints, centroids *matrix.DenseMatrix, measurer VectorMeasurer) Model {
/* datapoints CentPoinDist centroids
________________
____ ____ __|__ ______ | ____ ___________
| ... | | ... | V | ... |
| 3.0 5.1| <-- row i --> | 3 32.12 | row 3 | 3 38.1, ... |
|____ ___| |____ ______| |___ __________ |
*/
R, M := datapoints.GetSize()
CentPointDist := matrix.Zeros(R, 2)
k, _ := centroids.GetSize()
clusterChanged := true
var clusters []cluster
for clusterChanged == true {
clusterChanged = false
clusters = make([]cluster, 0)
jobs := make(chan PairPointCentroidJob, 1024)
results := make(chan PairPointCentroidResult, 1024)
done := make(chan int, 1024)
// Pair each point with its closest centroid.
go addPairPointCentroidJobs(jobs, datapoints, centroids, measurer, results)
for i := 0; i < numworkers; i++ {
go doPairPointCentroidJobs(done, jobs)
}
go awaitPairPointCentroidCompletion(done, results)
clusterChanged = assessClusters(CentPointDist, results) // This blocks so that all the results can be processed
// You have each data point grouped with a centroid,
for idx, cent := 0, 0; cent < k; cent++ {
// Select all the rows in CentPointDist whose first col value == cent.
// Get the corresponding row vector from datapoints and place it in pointsInCluster.
r, _ := CentPointDist.GetSize()
matches := make([]int, 0)
for i := 0; i < r; i++ {
v := CentPointDist.Get(i, 0)
if v == float64(cent) {
matches = append(matches, i)
}
}
// It is possible that some centroids may have zero points, so there
// may not be any matches.
if len(matches) == 0 {
continue
}
pointsInCluster := matrix.Zeros(len(matches), M)
i := 0
for _, rownum := range matches {
pointsInCluster.Set(i, 0, datapoints.Get(int(rownum), 0))
pointsInCluster.Set(i, 1, datapoints.Get(int(rownum), 1))
i++
}
// pointsInCluster now contains all the data points for the current
// centroid. The mean of the coordinates for this cluster becomes
// the new centroid for this cluster.
mean := pointsInCluster.MeanCols()
centroids.SetRowVector(mean, cent)
//.........这里部分代码省略.........
示例7: CalcDist
// CalcDist finds the ManhattanDistance which is the sum of the aboslute
// difference of the coordinates. Also known as rectilinear distance,
// city block distance, or taxicab distance.
func (md ManhattanDist) CalcDist(a, b *matrix.DenseMatrix) float64 {
return math.Abs(a.Get(0, 0)-b.Get(0, 0)) + math.Abs(a.Get(0, 1)-b.Get(0, 1))
}
示例8: Kmeansbi
// Kmeansbi bisects a given cluster and determines which centroids give the lowest error.
// Take the points in a cluster
// While the number of cluster < k
// for every cluster
// measure total error
// cacl kmeansp with k=2 on a given cluster
// measure total error after kmeansp split
// choose the cluster split with the lowest SSE
// commit the chosen split
//
// N.B. We are using SSE until the BIC is completed.
func Kmeansbi(datapoints *matrix.DenseMatrix, k int, cc CentroidChooser, measurer matutil.VectorMeasurer) (matCentroidlist, clusterAssignment *matrix.DenseMatrix, err error) {
numRows, numCols := datapoints.GetSize()
clusterAssignment = matrix.Zeros(numRows, numCols)
matCentroidlist = matrix.Zeros(k, numCols)
centroid0 := datapoints.MeanCols()
centroidlist := []*matrix.DenseMatrix{centroid0}
// Initially create one cluster.
for j := 0; j < numRows; j++ {
point := datapoints.GetRowVector(j)
distJ, err := measurer.CalcDist(centroid0, point)
if err != nil {
return matCentroidlist, clusterAssignment, errors.New(fmt.Sprintf("Kmeansbi: CalcDist returned err=%v", err))
}
clusterAssignment.Set(j, 1, math.Pow(distJ, 2))
}
var bestClusterAssignment, bestNewCentroids *matrix.DenseMatrix
var bestCentroidToSplit int
// Find the best centroid configuration.
for len(centroidlist) < k {
lowestSSE := math.Inf(1)
// Split cluster
for i, _ := range centroidlist {
// Get the points in this cluster
pointsCurCluster, err := clusterAssignment.FiltCol(float64(i), float64(i), 0)
if err != nil {
return matCentroidlist, clusterAssignment, err
}
centroids, splitClusterAssignment, err := Kmeansp(pointsCurCluster, 2, cc, measurer)
if err != nil {
return matCentroidlist, clusterAssignment, err
}
/* centroids is a 2X2 matrix of the best centroids found by kmeans
splitClustAssignment is a mX2 matrix where col0 is either 0 or 1 and refers to the rows in centroids
where col1 cotains the squared error between a centroid and a point. The rows here correspond to
the rows in ptsInCurrCluster. For example, if row 2 contains [1, 7.999] this means that centroid 1
has been paired with the point in row 2 of splitClustAssignment and that the squared error (distance
between centroid and point) is 7.999.
*/
// Calculate the sum of squared errors for each centroid.
// This give a statistcal measurement of how good
// the clustering is for this cluster.
sseSplit := splitClusterAssignment.SumCol(1)
// Calculate the SSE for the original cluster
sqerr, err := clusterAssignment.FiltCol(float64(0), math.Inf(1), 0)
if err != nil {
return matCentroidlist, clusterAssignment, err
}
sseNotSplit := sqerr.SumCol(1)
// TODO: Pre-BCI is this the best way to evaluate?
if sseSplit+sseNotSplit < lowestSSE {
bestCentroidToSplit = 1
bestNewCentroids = matrix.MakeDenseCopy(centroids)
bestClusterAssignment = matrix.MakeDenseCopy(splitClusterAssignment)
}
}
// Applying the split overwrites the existing cluster assginments for the
// cluster you have decided to split. Kmeansp() returned two clusters
// labeled 0 and 1. Change these cluster numbers to the cluster number
// you are splitting and the next cluster to be added.
m, err := bestClusterAssignment.FiltColMap(1, 1, 0)
if err != nil {
return matCentroidlist, clusterAssignment, err
}
for i, _ := range m {
bestClusterAssignment.Set(i, 0, float64(len(centroidlist)))
}
n, err := bestClusterAssignment.FiltColMap(0, 0, 0)
if err != nil {
return matCentroidlist, clusterAssignment, err
}
for i, _ := range n {
bestClusterAssignment.Set(i, 1, float64(bestCentroidToSplit))
}
fmt.Printf("Best centroid to split %f\n", bestCentroidToSplit)
r, _ := bestClusterAssignment.GetSize()
fmt.Printf("The length of best cluster assesment is %f\n", r)
// Replace a centroid with the two best centroids from the split.
//.........这里部分代码省略.........