本文整理汇总了Golang中crypto/elliptic.Curve.Params方法的典型用法代码示例。如果您正苦于以下问题:Golang Curve.Params方法的具体用法?Golang Curve.Params怎么用?Golang Curve.Params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类crypto/elliptic.Curve
的用法示例。
在下文中一共展示了Curve.Params方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Golang代码示例。
示例1: benchDouble
func benchDouble(curve elliptic.Curve, n int) {
x := curve.Params().Gx
y := curve.Params().Gy
for i := 0; i < n; i++ {
curve.Double(x, y)
}
}
示例2: benchScalarMult
func benchScalarMult(curve elliptic.Curve, k []byte, n int) {
x := curve.Params().Gx
y := curve.Params().Gy
for i := 0; i < n; i++ {
curve.ScalarMult(x, y, k)
}
}
示例3: benchAdd
func benchAdd(curve elliptic.Curve, n int) {
x := curve.Params().Gx
y := curve.Params().Gy
for i := 0; i < n; i++ {
curve.Add(x, y, x, y)
}
}
示例4: parseECPrivateKey
// parseECPrivateKey parses an ASN.1 Elliptic Curve Private Key Structure.
// The OID for the named curve may be provided from another source (such as
// the PKCS8 container) - if it is provided then use this instead of the OID
// that may exist in the EC private key structure.
func parseECPrivateKey(namedCurveOID *asn1.ObjectIdentifier, der []byte) (key *ecdsa.PrivateKey, err error) {
var privKey ecPrivateKey
if _, err := asn1.Unmarshal(der, &privKey); err != nil {
return nil, errors.New("x509: failed to parse EC private key: " + err.Error())
}
if privKey.Version != ecPrivKeyVersion {
return nil, fmt.Errorf("x509: unknown EC private key version %d", privKey.Version)
}
var curve elliptic.Curve
if namedCurveOID != nil {
curve = namedCurveFromOID(*namedCurveOID)
} else {
curve = namedCurveFromOID(privKey.NamedCurveOID)
}
if curve == nil {
return nil, errors.New("x509: unknown elliptic curve")
}
k := new(big.Int).SetBytes(privKey.PrivateKey)
if k.Cmp(curve.Params().N) >= 0 {
return nil, errors.New("x509: invalid elliptic curve private key value")
}
priv := new(ecdsa.PrivateKey)
priv.Curve = curve
priv.D = k
priv.X, priv.Y = curve.ScalarBaseMult(privKey.PrivateKey)
return priv, nil
}
示例5: getSuitableAlgFromCurve
// getSuitableAlgFromCurve inspects the key length in curve, and determines the
// corresponding jwt.Algorithm.
func getSuitableAlgFromCurve(curve elliptic.Curve) (jwt.Algorithm, error) {
curveBitSize := curve.Params().BitSize
// compute curve key len
keyLen := curveBitSize / 8
if curveBitSize%8 > 0 {
keyLen++
}
// determine alg
var alg jwt.Algorithm
switch 2 * keyLen {
case 64:
alg = jwt.ES256
case 96:
alg = jwt.ES384
case 132:
alg = jwt.ES512
default:
return jwt.NONE, fmt.Errorf("invalid key length %d", keyLen)
}
return alg, nil
}
示例6: UnmarshalBallot
func UnmarshalBallot(c elliptic.Curve, bytes []byte) (*Ballot, error) {
if len(bytes) < 4 {
return nil, errors.New("Not long enough!")
}
numballots := int(bytes[0])<<24 + int(bytes[1])<<16 +
int(bytes[2])<<8 + int(bytes[3])
ret := new(Ballot)
ret.boxes = make([]*Checkbox, numballots, numballots)
bytesize := (c.Params().BitSize + 7) >> 3
ballotlen := 2 + 8*bytesize
if len(bytes) != 4+numballots*ballotlen+2*bytesize {
return nil, errors.New("Wrong length!")
}
for i := 0; i < numballots; i++ {
ret.boxes[i] = UnmarshalCheckbox(c, bytes[i*ballotlen+4:(i+1)*ballotlen+4])
if ret.boxes[i] == nil {
return nil, errors.New("Incorrect serialization")
}
}
ret.c = new(big.Int)
ret.c.SetBytes(bytes[numballots*ballotlen+4 : numballots*ballotlen+
4+bytesize])
ret.r = new(big.Int)
ret.r.SetBytes(bytes[numballots*ballotlen+4+bytesize : numballots*ballotlen+4+2*bytesize])
return ret, nil
}
示例7: validateECPublicKey
// validateECPublicKey checks that the point is a valid public key for
// the given curve. See [SEC1], 3.2.2
func validateECPublicKey(curve elliptic.Curve, x, y *big.Int) bool {
if x.Sign() == 0 && y.Sign() == 0 {
return false
}
if x.Cmp(curve.Params().P) >= 0 {
return false
}
if y.Cmp(curve.Params().P) >= 0 {
return false
}
if !curve.IsOnCurve(x, y) {
return false
}
// We don't check if N * PubKey == 0, since
//
// - the NIST curves have cofactor = 1, so this is implicit.
// (We don't foresee an implementation that supports non NIST
// curves)
//
// - for ephemeral keys, we don't need to worry about small
// subgroup attacks.
return true
}
示例8: bits2octets
// https://tools.ietf.org/html/rfc6979#section-2.3.4
func bits2octets(in []byte, curve elliptic.Curve, rolen int) []byte {
z1 := hashToInt(in, curve)
z2 := new(big.Int).Sub(z1, curve.Params().N)
if z2.Sign() < 0 {
return int2octets(z1, rolen)
}
return int2octets(z2, rolen)
}
示例9: DecryptMark
func DecryptMark(c elliptic.Curve, m *Mark, priv []byte) (int, error) {
tx, ty := c.ScalarMult(m.ax, m.ay, priv)
tm := big.NewInt(0)
tm.Sub(c.Params().P, ty)
tm.Mod(tm, c.Params().P)
px, py := c.Add(m.bx, m.by, tx, tm)
return DiscreteLog(px, py, c, 1<<10)
}
示例10: ecHash
// ecHash returns the hash to match the given elliptic curve, see RFC
// 5656, section 6.2.1
func ecHash(curve elliptic.Curve) crypto.Hash {
bitSize := curve.Params().BitSize
switch {
case bitSize <= 256:
return crypto.SHA256
case bitSize <= 384:
return crypto.SHA384
}
return crypto.SHA512
}
示例11: UnmarshalMark
func UnmarshalMark(c elliptic.Curve, bytes []byte) *Mark {
bytelen := (c.Params().BitSize + 7) >> 3
pointlen := 1 + 2*bytelen
if len(bytes) != 2*pointlen {
return nil
}
ret := new(Mark)
ret.ax, ret.ay = elliptic.Unmarshal(c, bytes[:pointlen])
ret.bx, ret.by = elliptic.Unmarshal(c, bytes[pointlen:2*pointlen])
return ret
}
示例12: MarshalMark
func MarshalMark(c elliptic.Curve, m *Mark) []byte {
bytelen := (c.Params().BitSize + 7) >> 3
pointlen := 1 + 2*bytelen
outlen := 2 * pointlen
ret := make([]byte, outlen, outlen)
abytes := elliptic.Marshal(c, m.ax, m.ay)
copy(ret, abytes)
bbytes := elliptic.Marshal(c, m.bx, m.by)
copy(ret[pointlen:], bbytes)
return ret
}
示例13: Marshal
// Marshal encodes a ECC Point into it's compressed representation
func Marshal(curve elliptic.Curve, x, y *big.Int) []byte {
byteLen := (curve.Params().BitSize + 7) >> 3
ret := make([]byte, 1+byteLen)
ret[0] = 2 + byte(y.Bit(0))
xBytes := x.Bytes()
copy(ret[1+byteLen-len(xBytes):], xBytes)
return ret
}
示例14: curveSize
// Get size of curve in bytes
func curveSize(crv elliptic.Curve) int {
bits := crv.Params().BitSize
div := bits / 8
mod := bits % 8
if mod == 0 {
return div
}
return div + 1
}
示例15: goodCurve
// GoodCurve determines if an elliptic curve meets our requirements.
func (policy *KeyPolicy) goodCurve(c elliptic.Curve) (err error) {
// Simply use a whitelist for now.
params := c.Params()
switch {
case policy.AllowECDSANISTP256 && params == elliptic.P256().Params():
return nil
case policy.AllowECDSANISTP384 && params == elliptic.P384().Params():
return nil
default:
return core.MalformedRequestError(fmt.Sprintf("ECDSA curve %v not allowed", params.Name))
}
}