本文整理汇总了C#中weka.core.Instances.deleteAttributeAt方法的典型用法代码示例。如果您正苦于以下问题:C# Instances.deleteAttributeAt方法的具体用法?C# Instances.deleteAttributeAt怎么用?C# Instances.deleteAttributeAt使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类weka.core.Instances
的用法示例。
在下文中一共展示了Instances.deleteAttributeAt方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: test
//.........这里部分代码省略.........
if (instances.instance(i).classIsMissing())
{
System.Console.Out.WriteLine("\tis missing");
}
else
{
System.Console.Out.WriteLine();
}
}
// Create random weights.
System.Console.Out.WriteLine("\nCreating random weights for instances.");
for (i = 0; i < instances.numInstances(); i++)
{
instances.instance(i).Weight = random.NextDouble();
}
// Print all instances and their weights (and the sum of weights).
System.Console.Out.WriteLine("\nInstances and their weights:\n");
System.Console.Out.WriteLine(instances.instancesAndWeights());
System.Console.Out.Write("\nSum of weights: ");
System.Console.Out.WriteLine(instances.sumOfWeights());
// Insert an attribute
secondInstances = new Instances(instances);
Attribute testAtt = new Attribute("Inserted");
secondInstances.insertAttributeAt(testAtt, 0);
System.Console.Out.WriteLine("\nSet with inserted attribute:\n");
//UPGRADE_TODO: Method 'java.io.PrintStream.println' was converted to 'System.Console.Out.WriteLine' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javaioPrintStreamprintln_javalangObject'"
System.Console.Out.WriteLine(secondInstances);
System.Console.Out.WriteLine("\nClass name: " + secondInstances.classAttribute().name());
// Delete the attribute
secondInstances.deleteAttributeAt(0);
System.Console.Out.WriteLine("\nSet with attribute deleted:\n");
//UPGRADE_TODO: Method 'java.io.PrintStream.println' was converted to 'System.Console.Out.WriteLine' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javaioPrintStreamprintln_javalangObject'"
System.Console.Out.WriteLine(secondInstances);
System.Console.Out.WriteLine("\nClass name: " + secondInstances.classAttribute().name());
// Test if headers are equal
System.Console.Out.WriteLine("\nHeaders equal: " + instances.equalHeaders(secondInstances) + "\n");
// Print data in internal format.
System.Console.Out.WriteLine("\nData (internal values):\n");
for (i = 0; i < instances.numInstances(); i++)
{
for (j = 0; j < instances.numAttributes(); j++)
{
if (instances.instance(i).isMissing(j))
{
System.Console.Out.Write("? ");
}
else
{
System.Console.Out.Write(instances.instance(i).value_Renamed(j) + " ");
}
}
System.Console.Out.WriteLine();
}
// Just print header
System.Console.Out.WriteLine("\nEmpty dataset:\n");
empty = new Instances(instances, 0);
//UPGRADE_TODO: Method 'java.io.PrintStream.println' was converted to 'System.Console.Out.WriteLine' which has a different behavior. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1073_javaioPrintStreamprintln_javalangObject'"
System.Console.Out.WriteLine(empty);
System.Console.Out.WriteLine("\nClass name: " + empty.classAttribute().name());
示例2: buildClassifier
/// <summary> Builds the boosted classifier</summary>
public virtual void buildClassifier(Instances data)
{
m_RandomInstance = new Random(m_Seed);
Instances boostData;
int classIndex = data.classIndex();
if (data.classAttribute().Numeric)
{
throw new Exception("LogitBoost can't handle a numeric class!");
}
if (m_Classifier == null)
{
throw new System.Exception("A base classifier has not been specified!");
}
if (!(m_Classifier is WeightedInstancesHandler) && !m_UseResampling)
{
m_UseResampling = true;
}
if (data.checkForStringAttributes())
{
throw new Exception("Cannot handle string attributes!");
}
if (m_Debug)
{
System.Console.Error.WriteLine("Creating copy of the training data");
}
m_NumClasses = data.numClasses();
m_ClassAttribute = data.classAttribute();
// Create a copy of the data
data = new Instances(data);
data.deleteWithMissingClass();
// Create the base classifiers
if (m_Debug)
{
System.Console.Error.WriteLine("Creating base classifiers");
}
m_Classifiers = new Classifier[m_NumClasses][];
for (int j = 0; j < m_NumClasses; j++)
{
m_Classifiers[j] = Classifier.makeCopies(m_Classifier, this.NumIterations);
}
// Do we want to select the appropriate number of iterations
// using cross-validation?
int bestNumIterations = this.NumIterations;
if (m_NumFolds > 1)
{
if (m_Debug)
{
System.Console.Error.WriteLine("Processing first fold.");
}
// Array for storing the results
double[] results = new double[this.NumIterations];
// Iterate throught the cv-runs
for (int r = 0; r < m_NumRuns; r++)
{
// Stratify the data
data.randomize(m_RandomInstance);
data.stratify(m_NumFolds);
// Perform the cross-validation
for (int i = 0; i < m_NumFolds; i++)
{
// Get train and test folds
Instances train = data.trainCV(m_NumFolds, i, m_RandomInstance);
Instances test = data.testCV(m_NumFolds, i);
// Make class numeric
Instances trainN = new Instances(train);
trainN.ClassIndex = - 1;
trainN.deleteAttributeAt(classIndex);
trainN.insertAttributeAt(new weka.core.Attribute("'pseudo class'"), classIndex);
trainN.ClassIndex = classIndex;
m_NumericClassData = new Instances(trainN, 0);
// Get class values
int numInstances = train.numInstances();
double[][] tmpArray = new double[numInstances][];
for (int i2 = 0; i2 < numInstances; i2++)
{
tmpArray[i2] = new double[m_NumClasses];
}
double[][] trainFs = tmpArray;
double[][] tmpArray2 = new double[numInstances][];
for (int i3 = 0; i3 < numInstances; i3++)
{
tmpArray2[i3] = new double[m_NumClasses];
}
double[][] trainYs = tmpArray2;
for (int j = 0; j < m_NumClasses; j++)
{
//.........这里部分代码省略.........