当前位置: 首页>>代码示例>>C#>>正文


C# Otri.Onext方法代码示例

本文整理汇总了C#中TriangleNet.Data.Otri.Onext方法的典型用法代码示例。如果您正苦于以下问题:C# Otri.Onext方法的具体用法?C# Otri.Onext怎么用?C# Otri.Onext使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在TriangleNet.Data.Otri的用法示例。


在下文中一共展示了Otri.Onext方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: TriangulatePolygon

        /// <summary>
        /// Find the Delaunay triangulation of a polygon that has a certain "nice" shape. 
        /// This includes the polygons that result from deletion of a vertex or insertion 
        /// of a segment.
        /// </summary>
        /// <param name="firstedge">The primary edge of the first triangle.</param>
        /// <param name="lastedge">The primary edge of the last triangle.</param>
        /// <param name="edgecount">The number of sides of the polygon, including its 
        /// base.</param>
        /// <param name="doflip">A flag, wether to perform the last flip.</param>
        /// <param name="triflaws">A flag that determines whether the new triangles should 
        /// be tested for quality, and enqueued if they are bad.</param>
        /// <remarks>
        //  This is a conceptually difficult routine. The starting assumption is
        //  that we have a polygon with n sides. n - 1 of these sides are currently
        //  represented as edges in the mesh. One side, called the "base", need not
        //  be.
        //
        //  Inside the polygon is a structure I call a "fan", consisting of n - 1
        //  triangles that share a common origin. For each of these triangles, the
        //  edge opposite the origin is one of the sides of the polygon. The
        //  primary edge of each triangle is the edge directed from the origin to
        //  the destination; note that this is not the same edge that is a side of
        //  the polygon. 'firstedge' is the primary edge of the first triangle.
        //  From there, the triangles follow in counterclockwise order about the
        //  polygon, until 'lastedge', the primary edge of the last triangle.
        //  'firstedge' and 'lastedge' are probably connected to other triangles
        //  beyond the extremes of the fan, but their identity is not important, as
        //  long as the fan remains connected to them.
        //
        //  Imagine the polygon oriented so that its base is at the bottom.  This
        //  puts 'firstedge' on the far right, and 'lastedge' on the far left.
        //  The right vertex of the base is the destination of 'firstedge', and the
        //  left vertex of the base is the apex of 'lastedge'.
        //
        //  The challenge now is to find the right sequence of edge flips to
        //  transform the fan into a Delaunay triangulation of the polygon.  Each
        //  edge flip effectively removes one triangle from the fan, committing it
        //  to the polygon.  The resulting polygon has one fewer edge. If 'doflip'
        //  is set, the final flip will be performed, resulting in a fan of one
        //  (useless?) triangle. If 'doflip' is not set, the final flip is not
        //  performed, resulting in a fan of two triangles, and an unfinished
        //  triangular polygon that is not yet filled out with a single triangle.
        //  On completion of the routine, 'lastedge' is the last remaining triangle,
        //  or the leftmost of the last two.
        //
        //  Although the flips are performed in the order described above, the
        //  decisions about what flips to perform are made in precisely the reverse
        //  order. The recursive triangulatepolygon() procedure makes a decision,
        //  uses up to two recursive calls to triangulate the "subproblems"
        //  (polygons with fewer edges), and then performs an edge flip.
        //
        //  The "decision" it makes is which vertex of the polygon should be
        //  connected to the base. This decision is made by testing every possible
        //  vertex.  Once the best vertex is found, the two edges that connect this
        //  vertex to the base become the bases for two smaller polygons. These
        //  are triangulated recursively. Unfortunately, this approach can take
        //  O(n^2) time not only in the worst case, but in many common cases. It's
        //  rarely a big deal for vertex deletion, where n is rarely larger than
        //  ten, but it could be a big deal for segment insertion, especially if
        //  there's a lot of long segments that each cut many triangles. I ought to
        //  code a faster algorithm some day.
        /// </remarks>
        private void TriangulatePolygon(Otri firstedge, Otri lastedge,
                                int edgecount, bool doflip, bool triflaws)
        {
            Otri testtri = default(Otri);
            Otri besttri = default(Otri);
            Otri tempedge = default(Otri);
            Vertex leftbasevertex, rightbasevertex;
            Vertex testvertex;
            Vertex bestvertex;

            int bestnumber = 1;

            // Identify the base vertices.
            leftbasevertex = lastedge.Apex();
            rightbasevertex = firstedge.Dest();

            // Find the best vertex to connect the base to.
            firstedge.Onext(ref besttri);
            bestvertex = besttri.Dest();
            besttri.Copy(ref testtri);

            for (int i = 2; i <= edgecount - 2; i++)
            {
                testtri.OnextSelf();
                testvertex = testtri.Dest();
                // Is this a better vertex?
                if (Primitives.InCircle(leftbasevertex, rightbasevertex, bestvertex, testvertex) > 0.0)
                {
                    testtri.Copy(ref besttri);
                    bestvertex = testvertex;
                    bestnumber = i;
                }
            }

            if (bestnumber > 1)
            {
                // Recursively triangulate the smaller polygon on the right.
//.........这里部分代码省略.........
开发者ID:JackTing,项目名称:PathCAM,代码行数:101,代码来源:Mesh.cs

示例2: DeleteVertex

        /// <summary>
        /// Delete a vertex from a Delaunay triangulation, ensuring that the 
        /// triangulation remains Delaunay.
        /// </summary>
        /// <param name="deltri"></param>
        /// <remarks>The origin of 'deltri' is deleted. The union of the triangles 
        /// adjacent to this vertex is a polygon, for which the Delaunay triangulation 
        /// is found. Two triangles are removed from the mesh.
        ///
        /// Only interior vertices that do not lie on segments or boundaries 
        /// may be deleted.
        /// </remarks>
        internal void DeleteVertex(ref Otri deltri)
        {
            Otri countingtri = default(Otri);
            Otri firstedge = default(Otri), lastedge = default(Otri);
            Otri deltriright = default(Otri);
            Otri lefttri = default(Otri), righttri = default(Otri);
            Otri leftcasing = default(Otri), rightcasing = default(Otri);
            Osub leftsubseg = default(Osub), rightsubseg = default(Osub);
            Vertex delvertex;
            Vertex neworg;
            int edgecount;

            delvertex = deltri.Org();

            VertexDealloc(delvertex);

            // Count the degree of the vertex being deleted.
            deltri.Onext(ref countingtri);
            edgecount = 1;
            while (!deltri.Equal(countingtri))
            {
                edgecount++;
                countingtri.OnextSelf();
            }

            if (edgecount > 3)
            {
                // Triangulate the polygon defined by the union of all triangles
                // adjacent to the vertex being deleted.  Check the quality of
                // the resulting triangles.
                deltri.Onext(ref firstedge);
                deltri.Oprev(ref lastedge);
                TriangulatePolygon(firstedge, lastedge, edgecount, false, behavior.NoBisect == 0);
            }
            // Splice out two triangles.
            deltri.Lprev(ref deltriright);
            deltri.Dnext(ref lefttri);
            lefttri.Sym(ref leftcasing);
            deltriright.Oprev(ref righttri);
            righttri.Sym(ref rightcasing);
            deltri.Bond(ref leftcasing);
            deltriright.Bond(ref rightcasing);
            lefttri.SegPivot(ref leftsubseg);
            if (leftsubseg.seg != Mesh.dummysub)
            {
                deltri.SegBond(ref leftsubseg);
            }
            righttri.SegPivot(ref rightsubseg);
            if (rightsubseg.seg != Mesh.dummysub)
            {
                deltriright.SegBond(ref rightsubseg);
            }

            // Set the new origin of 'deltri' and check its quality.
            neworg = lefttri.Org();
            deltri.SetOrg(neworg);
            if (behavior.NoBisect == 0)
            {
                quality.TestTriangle(ref deltri);
            }

            // Delete the two spliced-out triangles.
            TriangleDealloc(lefttri.triangle);
            TriangleDealloc(righttri.triangle);
        }
开发者ID:JackTing,项目名称:PathCAM,代码行数:77,代码来源:Mesh.cs

示例3: FindDirection

        /// <summary>
        /// Find the first triangle on the path from one point to another.
        /// </summary>
        /// <param name="searchtri"></param>
        /// <param name="searchpoint"></param>
        /// <returns>
        /// The return value notes whether the destination or apex of the found
        /// triangle is collinear with the two points in question.</returns>
        /// <remarks>
        /// Finds the triangle that intersects a line segment drawn from the
        /// origin of 'searchtri' to the point 'searchpoint', and returns the result
        /// in 'searchtri'. The origin of 'searchtri' does not change, even though
        /// the triangle returned may differ from the one passed in. This routine
        /// is used to find the direction to move in to get from one point to
        /// another.
        /// </remarks>
        private FindDirectionResult FindDirection(ref Otri searchtri, Vertex searchpoint)
        {
            Otri checktri = default(Otri);
            Vertex startvertex;
            Vertex leftvertex, rightvertex;
            double leftccw, rightccw;
            bool leftflag, rightflag;

            startvertex = searchtri.Org();
            rightvertex = searchtri.Dest();
            leftvertex = searchtri.Apex();
            // Is 'searchpoint' to the left?
            leftccw = Primitives.CounterClockwise(searchpoint, startvertex, leftvertex);
            leftflag = leftccw > 0.0;
            // Is 'searchpoint' to the right?
            rightccw = Primitives.CounterClockwise(startvertex, searchpoint, rightvertex);
            rightflag = rightccw > 0.0;
            if (leftflag && rightflag)
            {
                // 'searchtri' faces directly away from 'searchpoint'. We could go left
                // or right. Ask whether it's a triangle or a boundary on the left.
                searchtri.Onext(ref checktri);
                if (checktri.triangle == Mesh.dummytri)
                {
                    leftflag = false;
                }
                else
                {
                    rightflag = false;
                }
            }
            while (leftflag)
            {
                // Turn left until satisfied.
                searchtri.OnextSelf();
                if (searchtri.triangle == Mesh.dummytri)
                {
                    logger.Error("Unable to find a triangle on path.", "Mesh.FindDirection().1");
                    throw new Exception("Unable to find a triangle on path.");
                }
                leftvertex = searchtri.Apex();
                rightccw = leftccw;
                leftccw = Primitives.CounterClockwise(searchpoint, startvertex, leftvertex);
                leftflag = leftccw > 0.0;
            }
            while (rightflag)
            {
                // Turn right until satisfied.
                searchtri.OprevSelf();
                if (searchtri.triangle == Mesh.dummytri)
                {
                    logger.Error("Unable to find a triangle on path.", "Mesh.FindDirection().2");
                    throw new Exception("Unable to find a triangle on path.");
                }
                rightvertex = searchtri.Dest();
                leftccw = rightccw;
                rightccw = Primitives.CounterClockwise(startvertex, searchpoint, rightvertex);
                rightflag = rightccw > 0.0;
            }
            if (leftccw == 0.0)
            {
                return FindDirectionResult.Leftcollinear;
            }
            else if (rightccw == 0.0)
            {
                return FindDirectionResult.Rightcollinear;
            }
            else
            {
                return FindDirectionResult.Within;
            }
        }
开发者ID:JackTing,项目名称:PathCAM,代码行数:88,代码来源:Mesh.cs


注:本文中的TriangleNet.Data.Otri.Onext方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。