本文整理汇总了C#中System.Security.Cryptography.PasswordDeriveBytes.Dispose方法的典型用法代码示例。如果您正苦于以下问题:C# PasswordDeriveBytes.Dispose方法的具体用法?C# PasswordDeriveBytes.Dispose怎么用?C# PasswordDeriveBytes.Dispose使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Security.Cryptography.PasswordDeriveBytes
的用法示例。
在下文中一共展示了PasswordDeriveBytes.Dispose方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: DecryptData
/// <summary>
/// Decrypts a byte array with a password
/// </summary>
/// <param name="data">Data to decrypt</param>
/// <param name="password">Password to use</param>
/// <param name="paddingMode">Padding mode to use</param>
/// <returns>Decrypted byte array</returns>
/// <exception cref="System.ArgumentNullException">
/// data
/// or
/// password
/// </exception>
/// <exception cref="ArgumentNullException"></exception>
public static byte[] DecryptData(byte[] data, string password, PaddingMode paddingMode)
{
if (data == null || data.Length == 0)
throw new ArgumentNullException("data");
if (password == null)
throw new ArgumentNullException("password");
var pdb = new PasswordDeriveBytes(password, Encoding.UTF8.GetBytes("Salt"));
var rm = new RijndaelManaged { Padding = paddingMode };
ICryptoTransform decryptor = rm.CreateDecryptor(pdb.GetBytes(16), pdb.GetBytes(16));
pdb.Dispose();
using (var msDecrypt = new MemoryStream(data))
using (var csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
{
// Decrypted bytes will always be less then encrypted bytes, so length of encrypted data will be big enough for buffer.
byte[] fromEncrypt = new byte[data.Length];
// Read as many bytes as possible.
int read = csDecrypt.Read(fromEncrypt, 0, fromEncrypt.Length);
if (read < fromEncrypt.Length)
{
// Return a byte array of proper size.
byte[] clearBytes = new byte[read];
Buffer.BlockCopy(fromEncrypt, 0, clearBytes, 0, read);
return clearBytes;
}
return fromEncrypt;
}
}
示例2: CreateSymmetricAlgorithm
private SymmetricAlgorithm CreateSymmetricAlgorithm(string password)
{
var pdb = new PasswordDeriveBytes(password, new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 });
try
{
var AESE = new AesManaged();
AESE.Key = pdb.GetBytes(AESE.KeySize / 8);
AESE.IV = pdb.GetBytes(AESE.BlockSize / 8);
return AESE;
}
finally
{
#if !NET35
if (pdb != null)
pdb.Dispose();
#endif
}
}
示例3: EncryptData
/// <summary>
/// Encrypts a byte array with a password
/// </summary>
/// <param name="data">Data to encrypt</param>
/// <param name="password">Password to use</param>
/// <param name="paddingMode">Padding mode to use</param>
/// <returns>Encrypted byte array</returns>
/// <exception cref="System.ArgumentNullException">
/// data
/// or
/// password
/// </exception>
/// <exception cref="ArgumentNullException"></exception>
public static byte[] EncryptData(byte[] data, string password, PaddingMode paddingMode)
{
if (data == null || data.Length == 0)
throw new ArgumentNullException("data");
if (password == null)
throw new ArgumentNullException("password");
var pdb = new PasswordDeriveBytes(password, Encoding.UTF8.GetBytes("Salt"));
var rm = new RijndaelManaged { Padding = paddingMode };
ICryptoTransform encryptor = rm.CreateEncryptor(pdb.GetBytes(16), pdb.GetBytes(16));
pdb.Dispose();
using (var msEncrypt = new MemoryStream())
using (var encStream = new CryptoStream(msEncrypt, encryptor, CryptoStreamMode.Write))
{
encStream.Write(data, 0, data.Length);
encStream.FlushFinalBlock();
return msEncrypt.ToArray();
}
}
示例4: Decrypt
/// <summary>
/// Decrypts specified ciphertext using Rijndael symmetric key algorithm.
/// </summary>
/// <param name="cipherText">
/// Base64-formatted ciphertext value.
/// </param>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived. The
/// derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that this
/// passphrase is an ASCII string.
/// </param>
/// <param name="saltValue">
/// Salt value used along with passphrase to generate password. Salt can
/// be any string. In this example we assume that salt is an ASCII string.
/// </param>
/// <returns>
/// Decrypted string value.
/// </returns>
/// <remarks>
/// Most of the logic in this function is similar to the Encrypt
/// logic. In order for decryption to work, all parameters of this function
/// - except cipherText value - must match the corresponding parameters of
/// the Encrypt function which was called to generate the
/// ciphertext.
/// </remarks>
public static string Decrypt (string cipherText,
string passPhrase,
string saltValue)
{
// Convert strings defining encryption key characteristics into byte
// arrays. Let us assume that strings only contain ASCII codes.
// If strings include Unicode characters, use Unicode, UTF7, or UTF8
// encoding.
byte [] initVectorBytes = Encoding.ASCII.GetBytes ("@IBAg3D4e5E6g7H5");
byte [] saltValueBytes = Encoding.ASCII.GetBytes (saltValue);
// Convert our ciphertext into a byte array.
byte [] cipherTextBytes = Convert.FromBase64String (cipherText);
// First, we must create a password, from which the key will be
// derived. This password will be generated from the specified
// passphrase and salt value. The password will be created using
// the specified hash algorithm. Password creation can be done in
// several iterations.
PasswordDeriveBytes password = new PasswordDeriveBytes (
passPhrase,
saltValueBytes,
EncryptorType,
EncryptIterations);
// Use the password to generate pseudo-random bytes for the encryption
// key. Specify the size of the key in bytes (instead of bits).
byte [] keyBytes = password.GetBytes (KeySize / 8);
password.Dispose ();
// Create uninitialized Rijndael encryption object.
RijndaelManaged symmetricKey = new RijndaelManaged { Mode = CipherMode.CBC };
// It is reasonable to set encryption mode to Cipher Block Chaining
// (CBC). Use default options for other symmetric key parameters.
// Generate decryptor from the existing key bytes and initialization
// vector. Key size will be defined based on the number of the key
// bytes.
ICryptoTransform decryptor = symmetricKey.CreateDecryptor (keyBytes, initVectorBytes);
// Define memory stream which will be used to hold encrypted data.
MemoryStream memoryStream = new MemoryStream (cipherTextBytes);
// Define cryptographic stream (always use Read mode for encryption).
CryptoStream cryptoStream = new CryptoStream (memoryStream, decryptor, CryptoStreamMode.Read);
// Since at this point we don't know what the size of decrypted data
// will be, allocate the buffer long enough to hold ciphertext;
// plaintext is never longer than ciphertext.
byte [] plainTextBytes = new byte [cipherTextBytes.Length];
// Start decrypting.
int decryptedByteCount = 0;
try {
decryptedByteCount = cryptoStream.Read (plainTextBytes, 0, plainTextBytes.Length);
} catch (Exception) {
return "";
}
// Close both streams.
cryptoStream.Close ();
// Convert decrypted data into a string.
// Let us assume that the original plaintext string was UTF8-encoded.
string plainText = Encoding.UTF8.GetString (plainTextBytes, 0, decryptedByteCount);
// Return decrypted string.
return plainText;
}
示例5: Encrypt
/// <summary>
/// Encrypts specified plaintext using Rijndael symmetric key algorithm
/// and returns a base64-encoded result.
/// </summary>
/// <param name="plainText">
/// Plaintext value to be encrypted.
/// </param>
/// <param name="passPhrase">
/// Passphrase from which a pseudo-random password will be derived. The
/// derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that this
/// passphrase is an ASCII string.
/// </param>
/// <param name="saltValue">
/// Salt value used along with passphrase to generate password. Salt can
/// be any string. In this example we assume that salt is an ASCII string.
/// </param>
/// <returns>
/// Encrypted value formatted as a base64-encoded string.
/// </returns>
public static string Encrypt (string plainText,
string passPhrase,
string saltValue)
{
// Convert strings into byte arrays.
// Let us assume that strings only contain ASCII codes.
// If strings include Unicode characters, use Unicode, UTF7, or UTF8
// encoding.
byte [] initVectorBytes = Encoding.ASCII.GetBytes ("@IBAg3D4e5E6g7H5");
byte [] saltValueBytes = Encoding.ASCII.GetBytes (saltValue);
// Convert our plaintext into a byte array.
// Let us assume that plaintext contains UTF8-encoded characters.
byte [] plainTextBytes = Encoding.UTF8.GetBytes (plainText);
// First, we must create a password, from which the key will be derived.
// This password will be generated from the specified passphrase and
// salt value. The password will be created using the specified hash
// algorithm. Password creation can be done in several iterations.
PasswordDeriveBytes password = new PasswordDeriveBytes (
passPhrase,
saltValueBytes,
EncryptorType,
EncryptIterations);
// Use the password to generate pseudo-random bytes for the encryption
// key. Specify the size of the key in bytes (instead of bits).
byte [] keyBytes = password.GetBytes (KeySize / 8);
password.Dispose ();
// Create uninitialized Rijndael encryption object.
RijndaelManaged symmetricKey = new RijndaelManaged { Mode = CipherMode.CBC };
// It is reasonable to set encryption mode to Cipher Block Chaining
// (CBC). Use default options for other symmetric key parameters.
// Generate encryptor from the existing key bytes and initialization
// vector. Key size will be defined based on the number of the key
// bytes.
ICryptoTransform encryptor = symmetricKey.CreateEncryptor (keyBytes, initVectorBytes);
// Define memory stream which will be used to hold encrypted data.
string cipherText = string.Empty;
MemoryStream memoryStream = new MemoryStream ();
CryptoStream cryptoStream = null;
try {
// Define cryptographic stream (always use Write mode for encryption).
cryptoStream = new CryptoStream (memoryStream, encryptor, CryptoStreamMode.Write);
// Start encrypting.
cryptoStream.Write (plainTextBytes, 0, plainTextBytes.Length);
// Finish encrypting.
cryptoStream.FlushFinalBlock ();
// Convert our encrypted data from a memory stream into a byte array.
byte [] cipherTextBytes = memoryStream.ToArray ();
// Close both streams.
cryptoStream.Close ();
// Convert encrypted data into a base64-encoded string.
cipherText = Convert.ToBase64String (cipherTextBytes);
} catch {
if (cryptoStream != null)
cryptoStream.Close ();
}
// Return encrypted string.
return cipherText;
}