本文整理汇总了C#中System.Collections.Stack.Size方法的典型用法代码示例。如果您正苦于以下问题:C# Stack.Size方法的具体用法?C# Stack.Size怎么用?C# Stack.Size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类System.Collections.Stack
的用法示例。
在下文中一共展示了Stack.Size方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: DirectedEulerianPath
private readonly Collections.Stack<Integer> _path; // Eulerian path; null if no suh path
#endregion Fields
#region Constructors
/// <summary>
/// Computes an Eulerian path in the specified digraph, if one exists.
/// </summary>
/// <param name="g">g the digraph</param>
public DirectedEulerianPath(Digraph g)
{
// find vertex from which to start potential Eulerian path:
// a vertex v with outdegree(v) > indegree(v) if it exits;
// otherwise a vertex with outdegree(v) > 0
var deficit = 0;
var s = NonIsolatedVertex(g);
for (var v = 0; v < g.V; v++)
{
if (g.Outdegree(v) > g.Indegree(v))
{
deficit += (g.Outdegree(v) - g.Indegree(v));
s = v;
}
}
// digraph can't have an Eulerian path
// (this condition is needed)
if (deficit > 1) return;
// special case for digraph with zero edges (has a degenerate Eulerian path)
if (s == -1) s = 0;
// create local view of adjacency lists, to iterate one vertex at a time
var adj = new IEnumerator<Integer>[g.V];
for (var v = 0; v < g.V; v++)
adj[v] = g.Adj(v).GetEnumerator();
// greedily add to cycle, depth-first search style
var stack = new Collections.Stack<Integer>();
stack.Push(s);
_path = new Collections.Stack<Integer>();
while (!stack.IsEmpty())
{
int v = stack.Pop();
while (adj[v].MoveNext())
{
stack.Push(v);
v = adj[v].Current;
}
// push vertex with no more available edges to path
_path.Push(v);
}
// check if all edges have been used
if (_path.Size() != g.E + 1)
_path = null;
//assert check(G);
}
示例2: EulerianPath
private readonly Collections.Stack<Integer> _path; // Eulerian path; null if no suh path
#endregion Fields
#region Constructors
/// <summary>
/// Computes an Eulerian path in the specified graph, if one exists.
/// </summary>
/// <param name="g">g the graph</param>
public EulerianPath(Graph g)
{
// find vertex from which to start potential Eulerian path:
// a vertex v with odd degree(v) if it exits;
// otherwise a vertex with degree(v) > 0
var oddDegreeVertices = 0;
var s = NonIsolatedVertex(g);
for (var v = 0; v < g.V; v++)
{
if (g.Degree(v) % 2 != 0)
{
oddDegreeVertices++;
s = v;
}
}
// graph can't have an Eulerian path
// (this condition is needed for correctness)
if (oddDegreeVertices > 2) return;
// special case for graph with zero edges (has a degenerate Eulerian path)
if (s == -1) s = 0;
// create local view of adjacency lists, to iterate one vertex at a time
// the helper Edge data type is used to avoid exploring both copies of an edge v-w
var adj = new Collections.Queue<EdgeW>[g.V];
for (var v = 0; v < g.V; v++)
adj[v] = new Collections.Queue<EdgeW>();
for (var v = 0; v < g.V; v++)
{
var selfLoops = 0;
foreach (int w in g.Adj(v))
{
// careful with self loops
if (v == w)
{
if (selfLoops % 2 == 0)
{
var e = new EdgeW(v, w, 0);
adj[v].Enqueue(e);
adj[w].Enqueue(e);
}
selfLoops++;
}
else if (v < w)
{
var e = new EdgeW(v, w, 0);
adj[v].Enqueue(e);
adj[w].Enqueue(e);
}
}
}
// initialize stack with any non-isolated vertex
var stack = new Collections.Stack<Integer>();
stack.Push(s);
// greedily search through edges in iterative DFS style
_path = new Collections.Stack<Integer>();
while (!stack.IsEmpty())
{
int v = stack.Pop();
while (!adj[v].IsEmpty())
{
var edge = adj[v].Dequeue();
if (edge.IsUsed) continue;
edge.IsUsed = true;
stack.Push(v);
v = edge.Other(v);
}
// push vertex with no more leaving edges to path
_path.Push(v);
}
// check if all edges are used
if (_path.Size() != g.E + 1)
_path = null;
//assert certifySolution(G);
}
示例3: EulerianCycle
private readonly Collections.Stack<Integer> _cycle = new Collections.Stack<Integer>(); // Eulerian cycle; null if no such cycle
#endregion Fields
#region Constructors
/// <summary>
/// Computes an Eulerian cycle in the specified graph, if one exists.
/// </summary>
/// <param name="g">g the graph</param>
public EulerianCycle(Graph g)
{
// must have at least one EdgeW
if (g.E == 0) return;
// necessary condition: all vertices have even degree
// (this test is needed or it might find an Eulerian path instead of cycle)
for (var v = 0; v < g.V; v++)
if (g.Degree(v) % 2 != 0)
return;
// create local view of adjacency lists, to iterate one vertex at a time
// the helper EdgeW data type is used to avoid exploring both copies of an EdgeW v-w
var adj = new Collections.Queue<EdgeW>[g.V];
for (var v = 0; v < g.V; v++)
adj[v] = new Collections.Queue<EdgeW>();
for (var v = 0; v < g.V; v++)
{
var selfLoops = 0;
foreach (int w in g.Adj(v))
{
// careful with self loops
if (v == w)
{
if (selfLoops % 2 == 0)
{
var e = new EdgeW(v, w, 0);
adj[v].Enqueue(e);
adj[w].Enqueue(e);
}
selfLoops++;
}
else if (v < w)
{
var e = new EdgeW(v, w, 0);
adj[v].Enqueue(e);
adj[w].Enqueue(e);
}
}
}
// initialize Collections.Stack with any non-isolated vertex
var s = NonIsolatedVertex(g);
var stack = new Collections.Stack<Integer>();
stack.Push(s);
// greedily search through EdgeWs in iterative DFS style
_cycle = new Collections.Stack<Integer>();
while (!stack.IsEmpty())
{
int v = stack.Pop();
while (!adj[v].IsEmpty())
{
var edgeW = adj[v].Dequeue();
if (edgeW.IsUsed) continue;
edgeW.IsUsed = true;
stack.Push(v);
v = edgeW.Other(v);
}
// push vertex with no more leaving EdgeWs to cycle
_cycle.Push(v);
}
// check if all EdgeWs are used
if (_cycle.Size() != g.E + 1)
_cycle = null;
//assert certifySolution(G);
}