当前位置: 首页>>代码示例>>C#>>正文


C# Queue.IsEmpty方法代码示例

本文整理汇总了C#中System.Collections.Queue.IsEmpty方法的典型用法代码示例。如果您正苦于以下问题:C# Queue.IsEmpty方法的具体用法?C# Queue.IsEmpty怎么用?C# Queue.IsEmpty使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在System.Collections.Queue的用法示例。


在下文中一共展示了Queue.IsEmpty方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: cycle

        private IEnumerable<DirectedEdge> _cycle; // negative cycle (or null if no such cycle)

        #endregion Fields

        #region Constructors

        /// <summary>
        /// Computes a shortest paths tree from <tt>s</tt> to every other vertex in
        /// the edge-weighted digraph <tt>G</tt>.
        /// </summary>
        /// <param name="g">g the acyclic digraph</param>
        /// <param name="s">s the source vertex</param>
        /// <exception cref="ArgumentException">unless 0 le; <tt>s</tt> le; <tt>V</tt> - 1</exception>
        public BellmanFordSP(EdgeWeightedDigraph g, int s)
        {
            _distTo = new double[g.V];
            _edgeTo = new DirectedEdge[g.V];
            _onQueue = new bool[g.V];
            for (var v = 0; v < g.V; v++)
                _distTo[v] = double.PositiveInfinity;
            _distTo[s] = 0.0;

            // Bellman-Ford algorithm
            _queue = new Collections.Queue<Integer>();
            _queue.Enqueue(s);
            _onQueue[s] = true;
            while (!_queue.IsEmpty() && !HasNegativeCycle())
            {
                int v = _queue.Dequeue();
                _onQueue[v] = false;
                Relax(g, v);
            }
        }
开发者ID:vladdnc,项目名称:Algorithms-NET,代码行数:33,代码来源:BellmanFordSP.cs

示例2: TopologicalX

        private readonly int[] _rank; // rank[v] = order where vertex v appers in order

        #endregion Fields

        #region Constructors

        /// <summary>
        /// Determines whether the digraph <tt>G</tt> has a topological order and, if so,
        /// finds such a topological order.
        /// </summary>
        /// <param name="g">g the digraph</param>
        public TopologicalX(Digraph g)
        {
            // indegrees of remaining vertices
            var indegree = new int[g.V];
            for (var v = 0; v < g.V; v++)
            {
                indegree[v] = g.Indegree(v);
            }

            // initialize
            _rank = new int[g.V];
            _order = new Collections.Queue<Integer>();
            var count = 0;

            // initialize queue to contain all vertices with indegree = 0
            var queue = new Collections.Queue<Integer>();
            for (var v = 0; v < g.V; v++)
                if (indegree[v] == 0) queue.Enqueue(v);

            for (var j = 0; !queue.IsEmpty(); j++)
            {
                int v = queue.Dequeue();
                _order.Enqueue(v);
                _rank[v] = count++;
                foreach (int w in g.Adj(v))
                {
                    indegree[w]--;
                    if (indegree[w] == 0) queue.Enqueue(w);
                }
            }

            // there is a directed cycle in subgraph of vertices with indegree >= 1.
            if (count != g.V)
            {
                _order = null;
            }

            //assert check(G);
        }
开发者ID:vladdnc,项目名称:Algorithms-NET,代码行数:50,代码来源:TopologicalX.cs

示例3: Bfs

 /// <summary>
 /// breadth-first search from multiple sources
 /// </summary>
 /// <param name="g"></param>
 /// <param name="sources"></param>
 private void Bfs(Graph g, IEnumerable<Integer> sources)
 {
     var q = new Collections.Queue<Integer>();
     foreach (int s in sources)
     {
         _marked[s] = true;
         _distTo[s] = 0;
         q.Enqueue(s);
     }
     while (!q.IsEmpty())
     {
         int v = q.Dequeue();
         foreach (int w in g.Adj(v))
         {
             if (_marked[w]) continue;
             _edgeTo[w] = v;
             _distTo[w] = _distTo[v] + 1;
             _marked[w] = true;
             q.Enqueue(w);
         }
     }
 }
开发者ID:vladdnc,项目名称:Algorithms-NET,代码行数:27,代码来源:BreadthFirstPaths.cs

示例4: Bfs

        private void Bfs(Graph g, int s)
        {
            var q = new Collections.Queue<Integer>();
            _color[s] = WHITE;
            _marked[s] = true;
            q.Enqueue(s);

            while (!q.IsEmpty())
            {
                int v = q.Dequeue();
                foreach (int w in g.Adj(v))
                {
                    if (!_marked[w])
                    {
                        _marked[w] = true;
                        _edgeTo[w] = v;
                        _color[w] = !_color[v];
                        q.Enqueue(w);
                    }
                    else if (_color[w] == _color[v])
                    {
                        _isBipartite = false;

                        // to form odd cycle, consider s-v path and s-w path
                        // and let x be closest node to v and w common to two paths
                        // then (w-x path) + (x-v path) + (edge v-w) is an odd-length cycle
                        // Note: distTo[v] == distTo[w];
                        _cycle = new Collections.Queue<Integer>();
                        var stack = new Collections.Stack<Integer>();
                        int x = v, y = w;
                        while (x != y)
                        {
                            stack.Push(x);
                            _cycle.Enqueue(y);
                            x = _edgeTo[x];
                            y = _edgeTo[y];
                        }
                        stack.Push(x);
                        while (!stack.IsEmpty())
                            _cycle.Enqueue(stack.Pop());
                        _cycle.Enqueue(w);
                        return;
                    }
                }
            }
        }
开发者ID:vladdnc,项目名称:Algorithms-NET,代码行数:46,代码来源:BipartiteX.cs

示例5: DirectedCycleX

        private readonly Collections.Stack<Integer> _cycle; // the directed cycle; null if digraph is acyclic

        #endregion Fields

        #region Constructors

        public DirectedCycleX(Digraph g)
        {
            // indegrees of remaining vertices
            var indegree = new int[g.V];
            for (var v = 0; v < g.V; v++)
            {
                indegree[v] = g.Indegree(v);
            }

            // initialize queue to contain all vertices with indegree = 0
            var queue = new Collections.Queue<Integer>();
            for (var v = 0; v < g.V; v++)
                if (indegree[v] == 0) queue.Enqueue(v);

            for (var j = 0; !queue.IsEmpty(); j++)
            {
                int v = queue.Dequeue();
                foreach (int w in g.Adj(v))
                {
                    indegree[w]--;
                    if (indegree[w] == 0) queue.Enqueue(w);
                }
            }

            // there is a directed cycle in subgraph of vertices with indegree >= 1.
            var edgeTo = new int[g.V];
            var root = -1;  // any vertex with indegree >= -1
            for (var v = 0; v < g.V; v++)
            {
                if (indegree[v] == 0) continue;
                root = v;
                foreach (int w in g.Adj(v))
                {
                    if (indegree[w] > 0)
                    {
                        edgeTo[w] = v;
                    }
                }
            }

            if (root != -1)
            {

                // find any vertex on cycle
                var visited = new bool[g.V];
                while (!visited[root])
                {
                    visited[root] = true;
                    root = edgeTo[root];
                }

                // extract cycle
                _cycle = new Collections.Stack<Integer>();
                var v = root;
                do
                {
                    _cycle.Push(v);
                    v = edgeTo[v];
                } while (v != root);
                _cycle.Push(root);
            }

            //assert check();
        }
开发者ID:vladdnc,项目名称:Algorithms-NET,代码行数:70,代码来源:DirectedCycleX.cs


注:本文中的System.Collections.Queue.IsEmpty方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。